File size: 15,498 Bytes
fbb3f82
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
import streamlit as st
from PIL import Image
from bs4 import BeautifulSoup as soup
from urllib.request import urlopen
from newspaper import Article
import io
import nltk
from bs4 import BeautifulSoup as soup

from googletrans import Translator
import yake
from wordcloud import WordCloud
import matplotlib.pyplot as plt
from gtts import gTTS
import joblib
import numpy as np
from tensorflow.keras.models import load_model
import spacy
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import FunctionTransformer
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report
nlp = spacy.load("en_core_web_sm")
import pandas as pd
import matplotlib.pyplot as plt

from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import LSTM,Dense, Dropout, SpatialDropout1D
from tensorflow.keras.layers import Embedding
import joblib
import tensorflow as tf

# Define a custom object scope to register the custom layer

# Load the saved RoBERTa model with the custom object scope

# Now, you can use the loaded_model for inference or further training

nltk.download('punkt')

df = pd.read_csv("dataset/train.csv",delimiter=',', encoding='ISO-8859-1')

tweet_df = df[['text','sentiment']]
tweet_df = tweet_df[tweet_df['sentiment'] != 'neutral']

sentiment_label = tweet_df.sentiment.factorize()
tweet = tweet_df.text.values
tokenizer = Tokenizer(num_words=5000)
tokenizer.fit_on_texts(tweet)
vocab_size = len(tokenizer.word_index) + 1
encoded_docs = tokenizer.texts_to_sequences(tweet)
padded_sequence = pad_sequences(encoded_docs, maxlen=200)

embedding_vector_length = 32
model = Sequential() 
model.add(Embedding(vocab_size, embedding_vector_length, input_length=200) )
model.add(SpatialDropout1D(0.25))
model.add(LSTM(50, dropout=0.5, recurrent_dropout=0.5))
model.add(Dropout(0.2))
model.add(Dense(1, activation='sigmoid')) 
model.compile(loss='binary_crossentropy',optimizer='adam', metrics=['accuracy'])
model=load_model('models/new.h5')
# history = model.fit(padded_sequence,sentiment_label[0],validation_split=0.2, epochs=5, batch_size=32)
import spacy
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import FunctionTransformer
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report
from preprocessor import preprocesser

nlp = spacy.load("en_core_web_sm")

text_processer = FunctionTransformer(preprocesser)
import joblib

# Save the trained model to a file

# To load the model back in the future
#define a function for filter stop words and punctuations and extract lemma from the txts
from model import pd

def predict_sentiment(text):
    tw = tokenizer.texts_to_sequences([text])
    tw = pad_sequences(tw,maxlen=200)
    prediction = int(model.predict(tw).round().item())
    return sentiment_label[1][prediction]


# Define the mapping of numerical labels to category names

# Assuming you have already loaded your model as 'loaded_model'
# Load your model here or replace 'loaded_model' with your actual model loading code









# Set Streamlit theme and layout


st.markdown(
    f"""
    <link rel="stylesheet" href="styles.css">
    """,
    unsafe_allow_html=True,
)

def fetch_news_search_topic(topic):
    site = 'https://news.google.com/rss/search?q={}'.format(topic)
    op = urlopen(site)  # Open that site
    rd = op.read()  # read data from site
    op.close()  # close the object
    sp_page = soup(rd, 'xml')  # scrapping data from site
    news_list = sp_page.find_all('item')  # finding news
    return news_list


def fetch_top_news():
    site = 'https://news.google.com/news/rss'
    op = urlopen(site)  # Open that site
    rd = op.read()  # read data from site
    op.close()  # close the object
    sp_page = soup(rd, 'xml')  # scrapping data from site
    news_list = sp_page.find_all('item')  # finding news
    return news_list


def analyze_sentiment_with_model(text):
    # Preprocess the text using the loaded vectorizer
    text_vectorized = vectorizer.transform([text])
    
    # Predict sentiment using the model
    sentiment = model.predict(text_vectorized)
    return sentiment[0]



def fetch_category_news(topic):
    site = 'https://news.google.com/news/rss/headlines/section/topic/{}'.format(topic)
    op = urlopen(site)  # Open that site
    rd = op.read()  # read data from site
    op.close()  # close the object
    sp_page = soup(rd, 'xml')  # scrapping data from site
    news_list = sp_page.find_all('item')  # finding news
    return news_list


def fetch_news_poster(poster_link):
    try:
        u = urlopen(poster_link)
        raw_data = u.read()
        image = Image.open(io.BytesIO(raw_data))
        st.image(image, use_column_width=True)
    except:
        image = Image.open('./picture/no_image.jpg')
        st.image(image, use_column_width=True)


def display_news_stories(news_list, quantity, target_language=None, enable_audio=False):
    for news in news_list:
        c = 0  # Initialize the counter for each news article
        st.write('**<span style="color: #f0f0f0;">({}) {}</span>**'.format(c, news.title.text), unsafe_allow_html=True)

        news_data = Article(news.link.text)
        try:
            news_data.download()
            news_data.parse()
            news_data.nlp()
        except Exception as e:
            st.error(e)
        
        # Calculate read time estimation
        word_count = len(news_data.text.split())
        read_time_minutes = int(word_count / 200)  # Assuming an average reading speed of 200 words per minute
        
        fetch_news_poster(news_data.top_image)
        
        with st.expander(news.title.text):
            st.markdown(
    '''<h6 style='text-align: justify; color: #f0f0f0; font-weight: bold;'>{}</h6>'''.format(news_data.summary),
            unsafe_allow_html=True)
            st.markdown("[Read more at {}...]({})".format(news.source.text, news.link.text))
            st.markdown("<span style='color:#ffffff;'>Estimated Read Time: {} min</span>".format(read_time_minutes), unsafe_allow_html=True)
            predicted_sentiment = predict_sentiment(news_data.summary)
            sentiment_emoji = get_sentiment_emoji(predicted_sentiment)
            st.markdown("<span style='color: #ffffff;'>Predicted Sentiment: {} ({})</span>".format(sentiment_emoji, predicted_sentiment), unsafe_allow_html=True)

# Set the Category of news text with custom style
            st.markdown("<span style='color: #ffffff;'>Category of news: {}</span>".format(pd(news_data.summary)), unsafe_allow_html=True)
            if target_language:
                translated_summary = translate_text(news_data.summary, target_language)
                st.markdown("<span style='color: #ffffff; font-weight: bold;'>Translated Summary ({})</span>:".format(target_language), unsafe_allow_html=True)
                news_title_translated = translate_text(news.title.text, target_language)

# Set the translated text with custom style
                st.markdown("<span style='color: #ffffff;'>{}</span>".format(news_title_translated), unsafe_allow_html=True)
                st.markdown("<span style='color: #ffffff;'>{}</span>".format(translated_summary), unsafe_allow_html=True)
            
          
            
            # Audio Summaries
            if enable_audio:
                audio_summary_button = st.button("Generate Audio Summary")
                if audio_summary_button:
                    audio_path = generate_audio_summary(news_data.summary, lang=target_language)
                    if audio_path:
                        st.audio(audio_path, format='audio/mp3')
                    else:
                        st.warning("Unable to generate audio summary.")
        
        st.success("Published Date: " + news.pubDate.text)
        if c >= quantity:
            break
def generate_audio_summary(text, lang='en'):
    try:
        tts = gTTS(text=text, lang=lang)
        audio_path = './audio_summary.mp3'
        tts.save(audio_path)
        return audio_path
    except Exception as e:
        st.error(f"Error generating audio summary: {e}")
        return None


def analyze_sentiment(text):
    analysis = TextBlob(text)
    sentiment_score = analysis.sentiment.polarity

    if sentiment_score > 0:
        return "positive"
    elif sentiment_score < 0:
        return "negative"
    else:
        return "neutral"

# Function to get sentiment emoji
def get_sentiment_emoji(sentiment):
    if sentiment == "positive":
        return "πŸ˜ƒ"
    elif sentiment == "negative":
        return "😞"
    else:
        return "😐"
 
def translate_text(text, target_language):
    try:
        translator = Translator()
        translated_text = translator.translate(text, dest=target_language)
        return translated_text.text
    except Exception as e:
        st.error(f"Error translating text: {e}")
        return ""


def extract_keywords(text):
    custom_kw_extractor = yake.KeywordExtractor(lan="en", n=1, dedupLim=0.9, dedupFunc='seqm', windowsSize=1, top=20)
    keywords = custom_kw_extractor.extract_keywords(text)
    return [kw for kw, _ in keywords]


def run():
    

# Define a custom CSS class to change the background color of the Streamlit app
    custom_css ="""
<style>
    .stApp {
        background-image: url('https://img.freepik.com/free-vector/global-technology-earth-news-bulletin-background_1017-33687.jpg?w=1380&t=st=1697978148~exp=1697978748~hmac=4943a05997b7d4461e9e581e177b3a5dcca3df44d6fa519f830ebe1b922fcfa0'); /* Replace with your image file name */
        background-color: #333; /* Fallback color if the image is unavailable */
        background-size: cover;
        background-repeat: no-repeat;
        background-attachment: fixed;
        background-position: center center;
        opacity: 0.9;
    }
</style>
"""

# Display the custom CSS using st.markdown
    st.markdown(custom_css, unsafe_allow_html=True)

# Your Streamlit app content goes here



# Define a custom CSS class with styles for the centered header

# Define a custom CSS class with styles for the centered header
    custom_css = """
<style>
    .custom-header {
        display: flex;
        align-items: center;
        justify-content: center;
        height: 20;
        text-align: center;
        color: #002366;
        background: rgba(245, 245, 245, 0.7); /* Transparent whitish background */
        border: 2px solid #0074D9; /* Stylish border color */
        border-radius: 15px; /* Circular border radius for a stylish look */
        font-family: 'Bebas Neue', sans-serif;
        font-size: 60px;
        text-transform: uppercase;
        box-shadow: 0 0 20px rgba(0, 0, 0, 0.3); /* Box shadow for depth and style */
        
    }
    .sub-header {
        font-size: 25px;
        color: #f0f0f0; /* Set font color to white */
        text-align: center; /* Center the text */
        margin-left: 20px;
    }
</style>

"""

# Display the custom CSS using st.markdown
    st.markdown(custom_css, unsafe_allow_html=True)

# Use the custom class on your centered header element
    st.markdown("<div class='custom-header'>NewsWaves</div>", unsafe_allow_html=True)
    st.markdown("<div class='sub-header'>A platform to get daily latest news updates of your favorite category.</div>", unsafe_allow_html=True)
# The rest of your Streamlit app goes here


# The rest of your Streamlit app goes here

    col1, col2, col3 = st.columns([3, 5, 3])

    with col1:
        st.write("")
        

    

    with col3:
        st.write("")

    category = ['Select any category', 'Latest News', 'Favourite News', 'Search Any News']
    cat_op = st.selectbox('Select your Category', category)

    if cat_op == category[0]:
        st.warning('Please select a category!')
    elif cat_op == category[1]:
        st.markdown("<h3 style='color: #ffffff; font-weight: bold;'>Latest News for you</h3>", unsafe_allow_html=True)
        st.markdown("<span style='color: #ffffff;'>Number of News:</span>", unsafe_allow_html=True)

# Set the number of news input
       

# Set the number of news input with custom style for deep black font
        no_of_news = st.number_input('', min_value=5, max_value=25, step=1, value=10, format="%d", key="no_of_news")
        st.markdown("<style>div[data-baseweb='input'] input { color: #000000 !important; }</style>", unsafe_allow_html=True)

        st.markdown("<span style='color: #ffffff;'>Translate to Language (optional):</span>", unsafe_allow_html=True)

# Set the target language input with reduced newline
        target_language = st.text_input('', key="target_language")
        st.markdown("<style>div[data-baseweb='input'] input { margin-top: 0; color: #ffffff; }</style>", unsafe_allow_html=True)
        news_list = fetch_top_news()
        display_news_stories(news_list, no_of_news, target_language)
    elif cat_op == category[2]:
        av_topics = ['Choose Topic', 'WORLD', 'NATION', 'BUSINESS', 'TECHNOLOGY', 'ENTERTAINMENT', 'SPORTS', 'SCIENCE', 'HEALTH']
        st.subheader("Choose your favorite Topic")
        chosen_topic = st.selectbox("Choose your favorite Topic", av_topics)
        if chosen_topic == av_topics[0]:
            st.warning("Please choose a topic")
        else:
            no_of_news = st.number_input('Number of News:', min_value=5, max_value=25, step=1, value=10)
            target_language = st.text_input('Translate to Language (optional):')

            news_list = fetch_category_news(chosen_topic)
            if news_list:
                st.subheader(f"βœ… Here are some {chosen_topic} News for you")
                display_news_stories(news_list, no_of_news,target_language)
            else:
                st.error(f"No News found for {chosen_topic}")
    elif cat_op == category[3]:
        user_topic = st.text_input("Enter your TopicπŸ”")
        no_of_news = st.number_input('Number of News:', min_value=5, max_value=15, step=1, value=10)
        target_language = st.text_input('Translate to Language (optional):')


        if st.button("Search", key="search_button") and user_topic:
            user_topic_pr = user_topic.replace(' ', '')
            news_list = fetch_news_search_topic(topic=user_topic_pr)
            if news_list:
                st.subheader(f"βœ… Here are some {user_topic.capitalize()} News for you")
                display_news_stories(news_list, no_of_news,target_language)
            else:
                st.error(f"No News found for {user_topic}")

st.markdown(
    """
    <style>
        .footer {
            position: fixed;
            bottom: 0;
            left: 0;
            width: 100%;
            background-color: #333;
            color: white;
            padding: 10px;
            text-align: center;
            font-size: 14px;
        }
    </style>
    """,
    unsafe_allow_html=True
)

# Display your contact information in the footer bar
st.markdown(
    """
    <div class="footer">
        Developed by:-Md Shoaib Shahriar Ibrahim | [email protected] | [GitHub Profile](https://github.com/Shoaib-33)
    </div>
    """,
    unsafe_allow_html=True
)

run()