Check for CUDA
Browse files- depth_estimator.py +7 -4
- pipeline.py +7 -4
- upscaler.py +4 -1
depth_estimator.py
CHANGED
@@ -3,17 +3,20 @@ import numpy as np
|
|
3 |
from PIL import Image
|
4 |
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
|
5 |
|
|
|
6 |
depth_estimator = None
|
7 |
feature_extractor = None
|
8 |
|
9 |
|
10 |
def init():
|
11 |
-
global depth_estimator, feature_extractor
|
|
|
|
|
12 |
|
13 |
print("Initializing depth estimator...")
|
14 |
|
15 |
depth_estimator = DPTForDepthEstimation.from_pretrained(
|
16 |
-
"Intel/dpt-hybrid-midas").to(
|
17 |
feature_extractor = DPTFeatureExtractor.from_pretrained(
|
18 |
"Intel/dpt-hybrid-midas")
|
19 |
|
@@ -22,9 +25,9 @@ def get_depth_map(image):
|
|
22 |
original_size = image.size
|
23 |
|
24 |
image = feature_extractor(
|
25 |
-
images=image, return_tensors="pt").pixel_values.to(
|
26 |
|
27 |
-
with torch.no_grad(), torch.autocast(
|
28 |
depth_map = depth_estimator(image).predicted_depth
|
29 |
|
30 |
depth_map = torch.nn.functional.interpolate(
|
|
|
3 |
from PIL import Image
|
4 |
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
|
5 |
|
6 |
+
device = None
|
7 |
depth_estimator = None
|
8 |
feature_extractor = None
|
9 |
|
10 |
|
11 |
def init():
|
12 |
+
global device, depth_estimator, feature_extractor
|
13 |
+
|
14 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
|
16 |
print("Initializing depth estimator...")
|
17 |
|
18 |
depth_estimator = DPTForDepthEstimation.from_pretrained(
|
19 |
+
"Intel/dpt-hybrid-midas").to(device)
|
20 |
feature_extractor = DPTFeatureExtractor.from_pretrained(
|
21 |
"Intel/dpt-hybrid-midas")
|
22 |
|
|
|
25 |
original_size = image.size
|
26 |
|
27 |
image = feature_extractor(
|
28 |
+
images=image, return_tensors="pt").pixel_values.to(device)
|
29 |
|
30 |
+
with torch.no_grad(), torch.autocast(device):
|
31 |
depth_map = depth_estimator(image).predicted_depth
|
32 |
|
33 |
depth_map = torch.nn.functional.interpolate(
|
pipeline.py
CHANGED
@@ -1,11 +1,14 @@
|
|
1 |
import torch
|
2 |
from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel, AutoencoderKL, UniPCMultistepScheduler
|
3 |
|
|
|
4 |
pipe = None
|
5 |
|
6 |
|
7 |
def init():
|
8 |
-
global pipe
|
|
|
|
|
9 |
|
10 |
print("Initializing depth ControlNet...")
|
11 |
|
@@ -13,14 +16,14 @@ def init():
|
|
13 |
"diffusers/controlnet-depth-sdxl-1.0",
|
14 |
use_safetensors=True,
|
15 |
torch_dtype=torch.float16
|
16 |
-
).to(
|
17 |
|
18 |
print("Initializing autoencoder...")
|
19 |
|
20 |
vae = AutoencoderKL.from_pretrained(
|
21 |
"madebyollin/sdxl-vae-fp16-fix",
|
22 |
torch_dtype=torch.float16,
|
23 |
-
).to(
|
24 |
|
25 |
print("Initializing SDXL pipeline...")
|
26 |
|
@@ -32,7 +35,7 @@ def init():
|
|
32 |
use_safetensors=True,
|
33 |
torch_dtype=torch.float16
|
34 |
# low_cpu_mem_usage=True
|
35 |
-
).to(
|
36 |
|
37 |
pipe.enable_model_cpu_offload()
|
38 |
# speed up diffusion process with faster scheduler and memory optimization
|
|
|
1 |
import torch
|
2 |
from diffusers import StableDiffusionXLControlNetPipeline, ControlNetModel, AutoencoderKL, UniPCMultistepScheduler
|
3 |
|
4 |
+
device = None
|
5 |
pipe = None
|
6 |
|
7 |
|
8 |
def init():
|
9 |
+
global device, pipe
|
10 |
+
|
11 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
|
13 |
print("Initializing depth ControlNet...")
|
14 |
|
|
|
16 |
"diffusers/controlnet-depth-sdxl-1.0",
|
17 |
use_safetensors=True,
|
18 |
torch_dtype=torch.float16
|
19 |
+
).to(device)
|
20 |
|
21 |
print("Initializing autoencoder...")
|
22 |
|
23 |
vae = AutoencoderKL.from_pretrained(
|
24 |
"madebyollin/sdxl-vae-fp16-fix",
|
25 |
torch_dtype=torch.float16,
|
26 |
+
).to(device)
|
27 |
|
28 |
print("Initializing SDXL pipeline...")
|
29 |
|
|
|
35 |
use_safetensors=True,
|
36 |
torch_dtype=torch.float16
|
37 |
# low_cpu_mem_usage=True
|
38 |
+
).to(device)
|
39 |
|
40 |
pipe.enable_model_cpu_offload()
|
41 |
# speed up diffusion process with faster scheduler and memory optimization
|
upscaler.py
CHANGED
@@ -2,6 +2,7 @@
|
|
2 |
import os
|
3 |
import requests
|
4 |
|
|
|
5 |
import cv2
|
6 |
import numpy as np
|
7 |
from PIL import Image
|
@@ -14,6 +15,8 @@ upsampler = None
|
|
14 |
def init():
|
15 |
global upsampler
|
16 |
|
|
|
|
|
17 |
print("Initializing upscaler...")
|
18 |
|
19 |
if not os.path.exists("weights"):
|
@@ -25,7 +28,7 @@ def init():
|
|
25 |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64,
|
26 |
num_block=23, num_grow_ch=32, scale=2)
|
27 |
upsampler = RealESRGANer(
|
28 |
-
scale=2, model_path="weights/RealESRGAN_x2plus.pth", model=model, device=
|
29 |
|
30 |
|
31 |
def upscale(image):
|
|
|
2 |
import os
|
3 |
import requests
|
4 |
|
5 |
+
import torch
|
6 |
import cv2
|
7 |
import numpy as np
|
8 |
from PIL import Image
|
|
|
15 |
def init():
|
16 |
global upsampler
|
17 |
|
18 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
+
|
20 |
print("Initializing upscaler...")
|
21 |
|
22 |
if not os.path.exists("weights"):
|
|
|
28 |
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64,
|
29 |
num_block=23, num_grow_ch=32, scale=2)
|
30 |
upsampler = RealESRGANer(
|
31 |
+
scale=2, model_path="weights/RealESRGAN_x2plus.pth", model=model, device=device)
|
32 |
|
33 |
|
34 |
def upscale(image):
|