import gradio as gr import torch from torch import nn import lightning.pytorch as pl from torch.nn import functional as F from utils import GPTLM,encode,decode newmodel = GPTLM.load_from_checkpoint('shakespeare_gpt.pth') def generate_dialogue(character_dropdown): if character_dropdown == "NONE": context = torch.zeros((1, 1), dtype=torch.long) return decode(newmodel.model.generate(context, max_new_tokens=100)[0].tolist()) else: context = torch.tensor([encode(character_dropdown)], dtype=torch.long) output_dialogue = decode(newmodel.model.generate(context, max_new_tokens=100)[0].tolist()) # remove extra dialogue returned output_dialogue = str(output_dialogue.split("\n\n")[0]) return output_dialogue HTML_TEMPLATE = """ <style> #app-header { text-align: center; background: rgba(255, 255, 255, 0.3); /* Semi-transparent white */ padding: 20px; border-radius: 10px; box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); position: relative; /* To position the artifacts */ } #app-header h1 { color: #FF0000; font-size: 2em; margin-bottom: 10px; } .concept { position: relative; transition: transform 0.3s; } .concept:hover { transform: scale(1.1); } .concept img { width: 100px; border-radius: 10px; box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); } .concept-description { position: absolute; bottom: -30px; left: 50%; transform: translateX(-50%); background-color: #4CAF50; color: white; padding: 5px 10px; border-radius: 5px; opacity: 0; transition: opacity 0.3s; } .concept:hover .concept-description { opacity: 1; } /* Artifacts */ </style> <div id="app-header"> <!-- Artifacts --> <div class="artifact large"></div> <div class="artifact large"></div> <div class="artifact large"></div> <div class="artifact large"></div> <!-- Content --> <h1>SHAKESPEARE DIALOGUE GENERATOR</h1> <p>Generate dialogue for Shakespearean character by selecting character from dropdown.</p> <p>Model: GPT, Dataset: Tiny Shakespeare, Token limit: 100.</p> """ with gr.Blocks(theme=gr.themes.Glass(),css=".gradio-container {background: url('file=https://github.com/Delve-ERAV1/S20/assets/11761529/c0ff84a4-dde6-473e-a820-d3797040eb9d')}") as interface: gr.HTML(value=HTML_TEMPLATE, show_label=False) gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") gr.Markdown("") with gr.Row(): character_dropdown = gr.Dropdown( label="Select a Character", choices=["NONE","ROMEO","JULIET","MENENIUS","ANTONIO"], value='Dream' ) outputs = gr.Textbox( label="Generated Dialogue" ) inputs = [character_dropdown] with gr.Column(): button = gr.Button("Generate") button.click(generate_dialogue, inputs=inputs, outputs=outputs) if __name__ == "__main__": interface.launch(enable_queue=True)