Commit
·
68ebb5b
1
Parent(s):
140eb40
initial commit
Browse files- .gitignore +7 -0
- Sniffer_AI.py +64 -0
- requirements.txt +29 -0
.gitignore
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
flagged/
|
2 |
+
*.pt
|
3 |
+
*.png
|
4 |
+
*.jpg
|
5 |
+
*.mkv
|
6 |
+
*.mp4
|
7 |
+
gradio_cached examples/
|
Sniffer_AI.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import joblib
|
3 |
+
import requests
|
4 |
+
import os
|
5 |
+
|
6 |
+
from sklearn.ensemble import RandomForestClassifier, BaggingClassifier, AdaBoostClassifier
|
7 |
+
from sklearn.tree import DecisionTreeClassifier
|
8 |
+
|
9 |
+
|
10 |
+
# Load the saved models
|
11 |
+
rf_model = joblib.load('rf_model.pkl')
|
12 |
+
dt_model = joblib.load('dt_model.pkl')
|
13 |
+
bagging_model = joblib.load('bagging_model.pkl')
|
14 |
+
ada_model = joblib.load('ada_model.pkl')
|
15 |
+
|
16 |
+
class_labels = {
|
17 |
+
0: "normal",
|
18 |
+
1: "backdoor",
|
19 |
+
2: "ddos",
|
20 |
+
3: "dos",
|
21 |
+
4: "injection",
|
22 |
+
5: "password",
|
23 |
+
6: "ransomware",
|
24 |
+
7: "scanning",
|
25 |
+
8: "xss",
|
26 |
+
9: "mitm"
|
27 |
+
}
|
28 |
+
|
29 |
+
def detect_intrusion(features, model_choice="Random Forest"):
|
30 |
+
# Convert the input string (comma-separated values) into a list of floats
|
31 |
+
features = [list(map(float, features.split(",")))]
|
32 |
+
|
33 |
+
# Choose the model based on user selection
|
34 |
+
if model_choice == "Random Forest":
|
35 |
+
model = rf_model
|
36 |
+
elif model_choice == "Decision Tree":
|
37 |
+
model = dt_model
|
38 |
+
elif model_choice == "Bagging Classifier":
|
39 |
+
model = bagging_model
|
40 |
+
elif model_choice == "AdaBoost Classifier":
|
41 |
+
model = ada_model
|
42 |
+
else:
|
43 |
+
return "Invalid model choice!"
|
44 |
+
|
45 |
+
# Predict the class (multi-class classification)
|
46 |
+
prediction = model.predict(features)
|
47 |
+
predicted_class = prediction[0] # Get the predicted class (an integer between 0-8)
|
48 |
+
|
49 |
+
# Return the human-readable class description
|
50 |
+
if predicted_class == 0:
|
51 |
+
return "No Intrusion Detected"
|
52 |
+
else:
|
53 |
+
return f"Intrusion Detected: {class_labels.get(predicted_class, 'Unknown Attack')}"
|
54 |
+
|
55 |
+
# Create a Gradio interface
|
56 |
+
iface = gr.Interface(fn=detect_intrusion,
|
57 |
+
inputs=[gr.Textbox(label="Input Features (comma-separated)"),
|
58 |
+
gr.Dropdown(choices=["Random Forest", "Decision Tree", "Bagging Classifier", "AdaBoost Classifier"], label="Select Model")],
|
59 |
+
outputs="text",
|
60 |
+
title="Intrusion Detection System",
|
61 |
+
description="Enter features in the format: feature1, feature2, feature3...")
|
62 |
+
|
63 |
+
# Launch the interface locally for testing
|
64 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Core Libraries for Machine Learning
|
2 |
+
scikit-learn==1.2.0 # Essential library for machine learning models (Random Forest, Decision Trees, etc.)
|
3 |
+
numpy==1.23.0 # Numerical operations (required for model input/output processing)
|
4 |
+
pandas==1.5.2 # Data manipulation and preprocessing
|
5 |
+
|
6 |
+
# Plotting and Visualization Tools
|
7 |
+
matplotlib==3.7.0 # Visualization library (used for plotting confusion matrices)
|
8 |
+
seaborn==0.12.1 # Advanced data visualization, helpful for heatmaps (confusion matrix)
|
9 |
+
|
10 |
+
# Saving and Loading Models
|
11 |
+
joblib==1.2.0 # For saving and loading machine learning models (used for Random Forest, Decision Trees, etc.)
|
12 |
+
|
13 |
+
# Reporting and Metrics
|
14 |
+
scikit-learn==1.2.0 # For generating classification reports, confusion matrices, and model evaluation metrics
|
15 |
+
|
16 |
+
# Hugging Face Hub Integration
|
17 |
+
huggingface_hub==0.16.0 # Integration with Hugging Face Hub (for model uploading, downloading, sharing)
|
18 |
+
transformers==4.26.1 # Hugging Face Transformers library (for model usage on the Hub)
|
19 |
+
|
20 |
+
# Optional - Jupyter Notebooks for Model Development and Experimentation
|
21 |
+
notebook==7.0.0 # For running Jupyter Notebooks in your project
|
22 |
+
|
23 |
+
# Optional - TensorBoard for Visualizing Training Process (if applicable to larger models)
|
24 |
+
tensorboard==2.10.1 # For tracking and visualizing model training
|
25 |
+
|
26 |
+
# Extras for performance and speedups
|
27 |
+
xgboost==1.6.2 # Gradient boosting library (optional, if you want to use advanced tree-based models)
|
28 |
+
lightgbm==3.3.5 # LightGBM for fast gradient boosting (optional, for high performance)
|
29 |
+
|