SilverDragon9 commited on
Commit
de02c0f
·
1 Parent(s): c0ea06e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -10
app.py CHANGED
@@ -11,9 +11,10 @@ os.environ["GRADIO_TEMP"] = tempfile.mkdtemp()
11
  # Load the saved Random Forest model
12
  rf_model = joblib.load('rf_model.pkl') # Ensure the correct model path
13
 
14
- # Define numeric features (Now exactly 6)
15
  numeric_features = [
16
- "date_numeric", "time_numeric", "door_state", "sphone_signal", "label"
 
17
  ]
18
 
19
  # Class labels for attack types
@@ -35,7 +36,8 @@ def convert_datetime_features(log_data):
35
  log_data['date_numeric'] = log_data['date'].astype(np.int64) // 10**9
36
 
37
  time_parsed = pd.to_datetime(log_data['time'], format='%H:%M:%S', errors='coerce')
38
- log_data['time_numeric'] = time_parsed.dt.hour * 3600 + time_parsed.dt.minute * 60 + time_parsed.dt.second
 
39
  except Exception as e:
40
  return f"Error processing date/time: {str(e)}"
41
 
@@ -50,18 +52,14 @@ def detect_intrusion(file):
50
 
51
  log_data = convert_datetime_features(log_data)
52
 
53
- # Ensure required features exist
54
  missing_features = [feature for feature in numeric_features if feature not in log_data.columns]
55
  if missing_features:
56
  return f"Missing features in file: {', '.join(missing_features)}"
57
 
58
  try:
59
- # Convert categorical and numeric values
60
  log_data['door_state'] = log_data['door_state'].astype(str).str.strip().replace({'closed': 0, 'open': 1})
61
  log_data['sphone_signal'] = pd.to_numeric(log_data['sphone_signal'], errors='coerce')
62
- log_data['label'] = pd.to_numeric(log_data['label'], errors='coerce')
63
 
64
- # Extract only the required numeric features
65
  feature_values = log_data[numeric_features].astype(float).values
66
  predictions = rf_model.predict(feature_values)
67
  except Exception as e:
@@ -88,12 +86,14 @@ iface = gr.Interface(
88
  inputs=[gr.File(label="Upload Log File (CSV format)")],
89
  outputs=[gr.Dataframe(label="Intrusion Detection Results"), gr.File(label="Download Predictions CSV")],
90
  title="Intrusion Detection System",
91
- description=("""
 
92
  Upload a CSV log file with the following features:
93
  date,time,door_state,sphone_signal,label
94
  Example:
95
- 26-04-19,13:59:20,1,-85,2
96
- """)
 
97
  )
98
 
99
  iface.launch()
 
11
  # Load the saved Random Forest model
12
  rf_model = joblib.load('rf_model.pkl') # Ensure the correct model path
13
 
14
+ # Define required numeric features
15
  numeric_features = [
16
+ "date_numeric", "total_minutes", "seconds",
17
+ "door_state", "sphone_signal", "label"
18
  ]
19
 
20
  # Class labels for attack types
 
36
  log_data['date_numeric'] = log_data['date'].astype(np.int64) // 10**9
37
 
38
  time_parsed = pd.to_datetime(log_data['time'], format='%H:%M:%S', errors='coerce')
39
+ log_data['total_minutes'] = (time_parsed.dt.hour * 60) + time_parsed.dt.minute
40
+ log_data['seconds'] = time_parsed.dt.second
41
  except Exception as e:
42
  return f"Error processing date/time: {str(e)}"
43
 
 
52
 
53
  log_data = convert_datetime_features(log_data)
54
 
 
55
  missing_features = [feature for feature in numeric_features if feature not in log_data.columns]
56
  if missing_features:
57
  return f"Missing features in file: {', '.join(missing_features)}"
58
 
59
  try:
 
60
  log_data['door_state'] = log_data['door_state'].astype(str).str.strip().replace({'closed': 0, 'open': 1})
61
  log_data['sphone_signal'] = pd.to_numeric(log_data['sphone_signal'], errors='coerce')
 
62
 
 
63
  feature_values = log_data[numeric_features].astype(float).values
64
  predictions = rf_model.predict(feature_values)
65
  except Exception as e:
 
86
  inputs=[gr.File(label="Upload Log File (CSV format)")],
87
  outputs=[gr.Dataframe(label="Intrusion Detection Results"), gr.File(label="Download Predictions CSV")],
88
  title="Intrusion Detection System",
89
+ description=(
90
+ """
91
  Upload a CSV log file with the following features:
92
  date,time,door_state,sphone_signal,label
93
  Example:
94
+ 26-04-19,13:59:20,1,-85,normal
95
+ """
96
+ )
97
  )
98
 
99
  iface.launch()