import pandas as pd import numpy as np import joblib import gradio as gr import os import tempfile # Set a custom directory for Gradio's temporary files os.environ["GRADIO_TEMP"] = tempfile.mkdtemp() # Dictionary of IoT devices and their corresponding model files device_models = { "Garage Door": "garage_door_model.pkl", "GPS Tracker": "gps_tracker_model.pkl", "Weather": "weather_model.pkl", "Thermostat": "thermostat_model.pkl", "Fridge": "fridge_model.pkl" } # Define required numeric features for each device device_features = { "Garage Door": ["date_numeric", "time_numeric", "door_state", "sphone_signal", "label"], "GPS Tracker": ["date_numeric", "time_numeric", "latitude", "longitude", "label"], "Weather": ["date_numeric", "time_numeric", "temperature", "humidity", "label"], "Thermostat": ["date_numeric", "time_numeric", "temp_set", "temp_actual", "label"], "Fridge": ["date_numeric", "time_numeric", "temp_inside", "door_open", "label"] } # Class labels for attack types (assuming same for all devices; adjust if needed) class_labels = { 0: "Normal", 1: "Backdoor", 2: "DDoS", 3: "Injection", 4: "Password Attack", 5: "Ransomware", 6: "Scanning", 7: "XSS", } def convert_datetime_features(log_data): """Convert date and time into numeric values.""" try: log_data['date'] = pd.to_datetime(log_data['date'], format='%d-%m-%y', errors='coerce') log_data['date_numeric'] = log_data['date'].astype(np.int64) // 10**9 time_parsed = pd.to_datetime(log_data['time'], format='%H:%M:%S', errors='coerce') log_data['time_numeric'] = (time_parsed.dt.hour * 3600) + (time_parsed.dt.minute * 60) + time_parsed.dt.second except Exception as e: return f"Error processing date/time: {str(e)}", None return None, log_data def detect_intrusion(device, file): """Process log file and predict attack type based on selected device.""" # Load the selected device's model try: model = joblib.load(device_models[device]) except Exception as e: return f"Error loading model for {device}: {str(e)}", None, None # Read the uploaded file try: log_data = pd.read_csv(file.name) except Exception as e: return f"Error reading file: {str(e)}", None, None # Convert date and time features error, log_data = convert_datetime_features(log_data) if error: return error, None, None # Get the required features for the selected device required_features = device_features[device] missing_features = [feature for feature in required_features if feature not in log_data.columns] if missing_features: return f"Missing features for {device}: {', '.join(missing_features)}", None, None # Preprocess device-specific features try: if device == "Garage Door": log_data['door_state'] = log_data['door_state'].astype(str).str.strip().replace({'closed': 0, 'open': 1}) log_data['sphone_signal'] = pd.to_numeric(log_data['sphone_signal'], errors='coerce') elif device == "GPS Tracker": log_data['latitude'] = pd.to_numeric(log_data['latitude'], errors='coerce') log_data['longitude'] = pd.to_numeric(log_data['longitude'], errors='coerce') elif device == "Weather": log_data['temperature'] = pd.to_numeric(log_data['temperature'], errors='coerce') log_data['humidity'] = pd.to_numeric(log_data['humidity'], errors='coerce') elif device == "Thermostat": log_data['temp_set'] = pd.to_numeric(log_data['temp_set'], errors='coerce') log_data['temp_actual'] = pd.to_numeric(log_data['temp_actual'], errors='coerce') elif device == "Fridge": log_data['temp_inside'] = pd.to_numeric(log_data['temp_inside'], errors='coerce') log_data['door_open'] = log_data['door_open'].astype(str).str.strip().replace({'closed': 0, 'open': 1}) # Prepare feature values for prediction feature_values = log_data[required_features].astype(float).values predictions = model.predict(feature_values) except Exception as e: return f"Error during prediction for {device}: {str(e)}", None, None # Map predictions to attack types log_data['Prediction'] = [class_labels.get(pred, 'Unknown Attack') for pred in predictions] # Format date for output log_data['date'] = log_data['date'].dt.strftime('%Y-%m-%d') # Select final output columns output_df = log_data[['date', 'time', 'Prediction']] # Save the output to a CSV file for download output_file = f"intrusion_results_{device.lower().replace(' ', '_')}.csv" output_df.to_csv(output_file, index=False) return None, output_df, output_file # Create Gradio interface def gradio_interface(device, file): error, df, output_file = detect_intrusion(device, file) if error: return error, None, None return df, df, output_file iface = gr.Interface( fn=gradio_interface, inputs=[ gr.Dropdown(choices=list(device_models.keys()), label="Select IoT Device", value="Garage Door"), gr.File(label="Upload Log File (CSV format)") ], outputs=[ gr.Textbox(label="Status/Error Message", visible=False), gr.Dataframe(label="Intrusion Detection Results"), gr.File(label="Download Predictions CSV") ], title="IoT Intrusion Detection System", description=( """ Select an IoT device and upload a CSV log file with the appropriate features for that device. Example features per device: - Garage Door: date,time,door_state,sphone_signal,label (e.g., 26-04-19,13:59:20,1,-85,normal) - GPS Tracker: date,time,latitude,longitude,label - Weather: date,time,temperature,humidity,label - Thermostat: date,time,temp_set,temp_actual,label - Fridge: date,time,temp_inside,door_open,label """ ) ) iface.launch()