Spaces:
Runtime error
Runtime error
Commit
·
369ad4d
1
Parent(s):
52b49e5
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,51 +1,140 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
import pickle
|
| 3 |
-
import pandas as pd
|
| 4 |
import torch
|
| 5 |
from PIL import Image
|
|
|
|
| 6 |
import numpy as np
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
|
|
|
| 9 |
|
| 10 |
st.markdown(
|
| 11 |
"""
|
| 12 |
-
<style>
|
| 13 |
body {
|
| 14 |
background-color: transparent;
|
| 15 |
}
|
| 16 |
-
|
| 17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
unsafe_allow_html=True,
|
| 19 |
)
|
| 20 |
|
| 21 |
|
|
|
|
| 22 |
device = torch.device("cpu")
|
| 23 |
|
| 24 |
testing_df = pd.read_csv("testing_df.csv")
|
| 25 |
-
model = CLIPModel()
|
| 26 |
model.load_state_dict(torch.load("weights.pt", map_location=torch.device('cpu')))
|
|
|
|
| 27 |
text_embeddings = torch.load('saved_text_embeddings.pt', map_location=device)
|
| 28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
def show_predicted_caption(image):
|
| 31 |
matches = predict_caption(
|
| 32 |
image, model, text_embeddings, testing_df["caption"]
|
| 33 |
-
)[
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
-
st.title("Medical Image Captioning")
|
| 37 |
-
st.write("Upload an image to get a caption:")
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
|
| 40 |
if uploaded_file is not None:
|
| 41 |
image = Image.open(uploaded_file)
|
| 42 |
-
st.image(image, caption="Uploaded Image", use_column_width=True)
|
| 43 |
-
st.write("")
|
| 44 |
-
|
| 45 |
if st.button("Generate Caption"):
|
| 46 |
with st.spinner("Generating caption..."):
|
| 47 |
image_np = np.array(image)
|
| 48 |
-
caption = show_predicted_caption(image_np)
|
|
|
|
| 49 |
st.success(f"Caption: {caption}")
|
| 50 |
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
from PIL import Image
|
| 3 |
+
import streamlit as st
|
| 4 |
import numpy as np
|
| 5 |
+
import pandas as pd
|
| 6 |
+
from main import predict_caption, CLIPModel, get_text_embeddings
|
| 7 |
+
import openai
|
| 8 |
+
import base64
|
| 9 |
+
from docx import Document
|
| 10 |
+
from docx.enum.text import WD_PARAGRAPH_ALIGNMENT
|
| 11 |
+
from io import BytesIO
|
| 12 |
+
import re
|
| 13 |
|
| 14 |
+
openai.api_key = "sk-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"
|
| 15 |
|
| 16 |
st.markdown(
|
| 17 |
"""
|
| 18 |
+
<style>
|
| 19 |
body {
|
| 20 |
background-color: transparent;
|
| 21 |
}
|
| 22 |
+
.container {
|
| 23 |
+
display: flex;
|
| 24 |
+
justify-content: center;
|
| 25 |
+
align-items: center;
|
| 26 |
+
background-color: rgba(255, 255, 255, 0.7);
|
| 27 |
+
border-radius: 15px;
|
| 28 |
+
padding: 20px;
|
| 29 |
+
}
|
| 30 |
+
.stApp {
|
| 31 |
+
background-color: transparent;
|
| 32 |
+
}
|
| 33 |
+
.stText, .stMarkdown, .stTextInput>label, .stButton>button>span {
|
| 34 |
+
color: #1c1c1c !important; /* Set the dark text color for text elements */
|
| 35 |
+
}
|
| 36 |
+
.stButton>button>span {
|
| 37 |
+
color: initial !important; /* Reset the text color for the 'Generate Caption' button */
|
| 38 |
+
}
|
| 39 |
+
.stMarkdown h1, .stMarkdown h2 {
|
| 40 |
+
color: #ff6b81 !important; /* Set the text color of h1 and h2 elements to soft red-pink */
|
| 41 |
+
font-weight: bold; /* Set the font weight to bold */
|
| 42 |
+
border: 2px solid #ff6b81; /* Add a bold border around the headers */
|
| 43 |
+
padding: 10px; /* Add padding to the headers */
|
| 44 |
+
border-radius: 5px; /* Add border-radius to the headers */
|
| 45 |
+
}
|
| 46 |
+
</style>
|
| 47 |
+
""",
|
| 48 |
unsafe_allow_html=True,
|
| 49 |
)
|
| 50 |
|
| 51 |
|
| 52 |
+
|
| 53 |
device = torch.device("cpu")
|
| 54 |
|
| 55 |
testing_df = pd.read_csv("testing_df.csv")
|
| 56 |
+
model = CLIPModel() # Create an instance of CLIPModel
|
| 57 |
model.load_state_dict(torch.load("weights.pt", map_location=torch.device('cpu')))
|
| 58 |
+
# ...)
|
| 59 |
text_embeddings = torch.load('saved_text_embeddings.pt', map_location=device)
|
| 60 |
|
| 61 |
+
def download_link(content, filename, link_text):
|
| 62 |
+
b64 = base64.b64encode(content).decode()
|
| 63 |
+
href = f'<a href="data:application/octet-stream;base64,{b64}" download="{filename}">{link_text}</a>'
|
| 64 |
+
return href
|
| 65 |
|
| 66 |
+
def show_predicted_caption(image, top_k=8):
|
| 67 |
matches = predict_caption(
|
| 68 |
image, model, text_embeddings, testing_df["caption"]
|
| 69 |
+
)[:top_k]
|
| 70 |
+
cleaned_matches = [re.sub(r'\s\(ROCO_\d+\)', '', match) for match in matches] # Add this line to clean the matches
|
| 71 |
+
return cleaned_matches # Return the cleaned_matches instead of matches
|
| 72 |
+
|
| 73 |
+
def generate_radiology_report(prompt):
|
| 74 |
+
response = openai.Completion.create(
|
| 75 |
+
engine="text-davinci-003",
|
| 76 |
+
prompt=prompt,
|
| 77 |
+
max_tokens=800,
|
| 78 |
+
n=1,
|
| 79 |
+
stop=None,
|
| 80 |
+
temperature=1,
|
| 81 |
+
)
|
| 82 |
+
report = response.choices[0].text.strip()
|
| 83 |
+
# Remove reference string from the report
|
| 84 |
+
report = re.sub(r'\(ROCO_\d+\)', '', report).strip()
|
| 85 |
+
return report
|
| 86 |
|
|
|
|
|
|
|
| 87 |
|
| 88 |
+
def save_as_docx(text, filename):
|
| 89 |
+
document = Document()
|
| 90 |
+
document.add_paragraph(text)
|
| 91 |
+
with BytesIO() as output:
|
| 92 |
+
document.save(output)
|
| 93 |
+
output.seek(0)
|
| 94 |
+
return output.getvalue()
|
| 95 |
+
|
| 96 |
+
st.title("RadiXGPT: An Evolution of machine doctors towards Radiology")
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
# Collect user's personal information
|
| 100 |
+
st.subheader("Personal Information")
|
| 101 |
+
first_name = st.text_input("First Name")
|
| 102 |
+
last_name = st.text_input("Last Name")
|
| 103 |
+
age = st.number_input("Age", min_value=0, max_value=120, value=25, step=1)
|
| 104 |
+
gender = st.selectbox("Gender", ["Male", "Female", "Other"])
|
| 105 |
+
|
| 106 |
+
st.write("Upload Scan to get Radiological Report:")
|
| 107 |
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
|
| 108 |
if uploaded_file is not None:
|
| 109 |
image = Image.open(uploaded_file)
|
|
|
|
|
|
|
|
|
|
| 110 |
if st.button("Generate Caption"):
|
| 111 |
with st.spinner("Generating caption..."):
|
| 112 |
image_np = np.array(image)
|
| 113 |
+
caption = show_predicted_caption(image_np)[0]
|
| 114 |
+
|
| 115 |
st.success(f"Caption: {caption}")
|
| 116 |
|
| 117 |
+
# Generate the radiology report
|
| 118 |
+
radiology_report = generate_radiology_report(f"Write Complete Radiology Report for this with clinical info, subjective, Assessment, Finding, Impressions, Conclusion and more in proper order : {caption}")
|
| 119 |
+
|
| 120 |
+
# Add personal information to the radiology report
|
| 121 |
+
radiology_report_with_personal_info = f"Patient Name: {first_name} {last_name}\nAge: {age}\nGender: {gender}\n\n{radiology_report}"
|
| 122 |
+
|
| 123 |
+
st.header("Radiology Report")
|
| 124 |
+
st.write(radiology_report_with_personal_info)
|
| 125 |
+
st.markdown(download_link(save_as_docx(radiology_report_with_personal_info, "radiology_report.docx"), "radiology_report.docx", "Download Report as DOCX"), unsafe_allow_html=True)
|
| 126 |
+
|
| 127 |
+
feedback_options = ["Satisfied", "Not Satisfied"]
|
| 128 |
+
selected_feedback = st.radio("Please provide feedback on the generated report:", feedback_options)
|
| 129 |
+
|
| 130 |
+
if selected_feedback == "Not Satisfied":
|
| 131 |
+
if st.button("Regenerate Report"):
|
| 132 |
+
with st.spinner("Regenerating report..."):
|
| 133 |
+
alternative_caption = get_alternative_caption(image_np, model, text_embeddings, testing_df["caption"])
|
| 134 |
+
regenerated_radiology_report = generate_radiology_report(f"Write Complete Radiology Report for this with clinical info, subjective, Assessment, Finding, Impressions, Conclusion and more in proper order : {alternative_caption}")
|
| 135 |
+
|
| 136 |
+
regenerated_radiology_report_with_personal_info = f"Patient Name: {first_name} {last_name}\nAge: {age}\nGender: {gender}\n\n{regenerated_radiology_report}"
|
| 137 |
+
|
| 138 |
+
st.header("Regenerated Radiology Report")
|
| 139 |
+
st.write(regenerated_radiology_report_with_personal_info)
|
| 140 |
+
st.markdown(download_link(save_as_docx(regenerated_radiology_report_with_personal_info, "regenerated_radiology_report.docx"), "regenerated_radiology_report.docx", "Download Regenerated Report as DOCX"), unsafe_allow_html=True)
|