Spaces:
Running
Running
File size: 9,564 Bytes
45e220d 6d8b9a4 9cf748a 6d8b9a4 9cf748a 6d8b9a4 9cf748a 91dde72 9cf748a 6d8b9a4 9cf748a 6d8b9a4 9cf748a 6d8b9a4 9cf748a 6d8b9a4 9cf748a 6d8b9a4 9cf748a 6d8b9a4 9cf748a 312dfa7 9cf748a 312dfa7 9cf748a 6d8b9a4 9cf748a 312dfa7 9cf748a 312dfa7 9cf748a 6d8b9a4 9cf748a 312dfa7 9cf748a 6d8b9a4 9cf748a 6d8b9a4 9cf748a b67fe0f 9cf748a 6d8b9a4 9cf748a 312dfa7 9cf748a 6d8b9a4 9cf748a 46224e4 9cf748a 46224e4 9cf748a 6d8b9a4 46224e4 9cf748a 6d8b9a4 9cf748a 46224e4 312dfa7 9cf748a 7a98153 312dfa7 9cf748a 46224e4 6d8b9a4 9cf748a 6d8b9a4 48f5bd8 e9e2a9b 6d8b9a4 e9e2a9b 9cf748a 6d8b9a4 9cf748a 6d8b9a4 9cf748a 6d8b9a4 312dfa7 46224e4 312dfa7 9cf748a 312dfa7 46224e4 312dfa7 9cf748a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
import torch
import time
import sys
sys.path.append('F5-TTS/src')
sys.path.append('SmoothCache/SmoothCache')
import os
from importlib.resources import files
from PIL import Image, ImageDraw
from functools import lru_cache
import gradio as gr
from smooth_cache_helper import SmoothCacheHelper
from f5_tts.infer.utils_infer import (
cross_fade_duration,
infer_process,
load_model,
load_vocoder,
preprocess_ref_audio_text,
speed
)
import numpy as np
import tomli
from cached_path import cached_path
from hydra.utils import get_class
from omegaconf import OmegaConf
try:
import spaces
USING_SPACES = True
except ImportError:
USING_SPACES = False
def gpu_decorator(func):
if USING_SPACES:
return spaces.GPU(func)
else:
return func
# Constants
layer_names = ['ff', 'attn']
colors_rgb = [(0, 210, 106), (255, 103, 35)] # green, orange
cell_size = 20
spacing = 2
n_layers = 2
# Presets
presets = {
"32 NFE, α=0.15": {
'attn': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1],
'ff': [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1],
},
"32 NFE, α=0.25": {
'attn': [1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1],
'ff': [1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1],
},
"16 NFE, α=0.3": {
'attn': [1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1],
'ff': [1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1],
},
"16 NFE, α=0.5": {
'attn': [1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1],
'ff': [1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1],
}
}
default_preset = "32 NFE, α=0.15"
seed = np.random.randint(0, 2**31 - 1)
torch.manual_seed(seed)
config = tomli.load(open(os.path.join(files("f5_tts").joinpath(
"infer/examples/basic"), "basic.toml"), "rb"))
model = config.get("model", "F5TTS_v1_Base")
ckpt_file = config.get("ckpt_file", "")
vocab_file = config.get("vocab_file", "")
model_cfg = OmegaConf.load(
config.get("model_cfg", str(
files("f5_tts").joinpath(f"configs/{model}.yaml")))
)
model_cls = get_class(f"f5_tts.model.{model_cfg.model.backbone}")
model_arc = model_cfg.model.arch
repo_name, ckpt_step, ckpt_type = "F5-TTS", 1250000, "safetensors"
if not ckpt_file:
ckpt_file = str(cached_path(
f"hf://SWivid/{repo_name}/{model}/model_{ckpt_step}.{ckpt_type}"))
if not vocab_file:
vocab_file = str(cached_path(f"hf://SWivid/{repo_name}/{model}/vocab.txt"))
ema_model = load_model(
model_cls, model_arc, ckpt_file, vocab_file=vocab_file
)
vocoder = load_vocoder()
@gpu_decorator
def render_grid(schedule: dict) -> np.ndarray:
n_steps = len(schedule['attn'])
img = Image.new("RGB", (n_steps * (cell_size + spacing),
n_layers * (cell_size + spacing)), "white")
draw = ImageDraw.Draw(img)
for row in range(n_layers):
layer = layer_names[row]
for col in range(n_steps):
x0 = col * (cell_size + spacing)
y0 = row * (cell_size + spacing)
x1 = x0 + cell_size
y1 = y0 + cell_size
color = colors_rgb[row] if schedule[layer][col] == 1 else "white"
draw.rectangle([x0, y0, x1, y1], fill=color, outline="black")
return np.array(img)
@gpu_decorator
def apply_preset(preset_name, cache_schedule):
if preset_name in presets:
schedule = presets[preset_name]
cache_schedule['attn'] = schedule['attn'][:]
cache_schedule['ff'] = schedule['ff'][:]
return render_grid(cache_schedule), len(cache_schedule['attn']), cache_schedule
@gpu_decorator
def toggle_cell(evt: gr.SelectData, cache_schedule):
col = evt.index[0] // (cell_size + spacing)
row = evt.index[1] // (cell_size + spacing)
layer = layer_names[row]
if col < len(cache_schedule[layer]):
cache_schedule[layer][col] ^= 1
return render_grid(cache_schedule), "Custom", cache_schedule
@gpu_decorator
def reset_schedule(n_steps):
cache_schedule = {
'attn': [1] * n_steps,
'ff': [1] * n_steps
}
return render_grid(cache_schedule), "Custom", cache_schedule
@gpu_decorator
def update_nfe(nfe_value):
return reset_schedule(nfe_value)
@gpu_decorator
def load_default():
cache_schedule = {
'attn': presets[default_preset]['attn'][:],
'ff': presets[default_preset]['ff'][:]
}
return render_grid(cache_schedule), default_preset
@gpu_decorator
def infer(
ref_audio_orig,
ref_text,
gen_text,
nfe_step,
cache_schedule,
recent_input
):
show_info = gr.Info
if not ref_audio_orig:
gr.Warning("Please provide reference audio.")
return gr.update(), gr.update(), ref_text, gr.update(), gr.update()
if not gen_text.strip():
gr.Warning("Please enter text to generate.")
return gr.update(), gr.update(), ref_text, gr.update(), gr.update()
ref_audio, ref_text = preprocess_ref_audio_text(
ref_audio_orig, ref_text, show_info=show_info)
skip_no_cache = False
if recent_input["ref_audio"] == ref_audio_orig and recent_input["ref_text"] == ref_text and recent_input["gen_text"] == gen_text and recent_input["nfe_step"] == nfe_step:
skip_no_cache = True
if not skip_no_cache:
start_time = time.time()
final_wave, final_sample_rate, _ = infer_process(
ref_audio,
ref_text,
gen_text,
ema_model,
vocoder,
cross_fade_duration=cross_fade_duration,
nfe_step=nfe_step,
speed=speed,
show_info=show_info,
progress=gr.Progress(),
)
process_time = time.time() - start_time
cache_helper = SmoothCacheHelper(
model=ema_model.transformer,
block_classes=get_class("f5_tts.model.modules.DiTBlock"),
components_to_wrap=['attn', 'ff'],
schedule=cache_schedule
)
cache_helper.enable()
start_time = time.time()
final_wave_cache, final_sample_rate_cache, _ = infer_process(
ref_audio,
ref_text,
gen_text,
ema_model,
vocoder,
cross_fade_duration=cross_fade_duration,
nfe_step=nfe_step,
speed=speed,
show_info=show_info,
progress=gr.Progress(),
)
process_time_cache = time.time() - start_time
cache_helper.disable()
recent_input["ref_audio"] = ref_audio_orig
recent_input["ref_text"] = ref_text
recent_input["gen_text"] = gen_text
recent_input["nfe_step"] = nfe_step
if skip_no_cache:
print("skip")
return gr.update(), (final_sample_rate_cache, final_wave_cache), ref_text, gr.update(), process_time_cache, recent_input
return (final_sample_rate, final_wave), (final_sample_rate_cache, final_wave_cache), ref_text, process_time, process_time_cache, recent_input
with gr.Blocks() as demo:
gr.Markdown("## F5-TTS + SmoothCache")
cache_schedule_state = gr.State({
'attn': presets[default_preset]['attn'][:],
'ff': presets[default_preset]['ff'][:]
})
recent_input_state = gr.State({
"ref_audio": None,
"ref_text": None,
"gen_text": None,
"nfe_step": None
})
ref_audio_input = gr.Audio(label="Reference Audio", type="filepath")
ref_text_input = gr.Textbox(label="Reference Text (Optional)")
gen_text_input = gr.Textbox(label="Text to Generate")
with gr.Row():
with gr.Column(scale=0):
preset_dropdown = gr.Dropdown(choices=list(
presets.keys()) + ["Custom"], label="Choose Preset", value=default_preset)
nfe_slider = gr.Slider(4, 64, value=32, step=1, label="Number of Steps (NFE)")
with gr.Group():
gr.Markdown(
"Click Grid to Customize Cache Schedule<br>🟧 = Compute Attn Layer <br> 🟩 = Compute FFN Layer <br> ⬜ = Cached Layer", container=True)
image = gr.Image(type="numpy", show_label=False, show_fullscreen_button=False, sources=[], interactive=True, scale=1)
generate_btn = gr.Button("Synthesize", variant="primary")
with gr.Row():
with gr.Group():
audio_output = gr.Audio(label="Synthesized Audio (No Cache)")
process_time = gr.Textbox(
label="⏱ Process Time", interactive=False)
with gr.Group():
audio_output_cache = gr.Audio(label="Synthesized Audio (Cache)")
process_time_cache = gr.Textbox(
label="⏱ Process Time", interactive=False)
# Wire up logic
preset_dropdown.change(
fn=apply_preset, inputs=[preset_dropdown, cache_schedule_state] , outputs=[image, nfe_slider, cache_schedule_state])
image.select(fn=toggle_cell, inputs=[cache_schedule_state], outputs=[image, preset_dropdown, cache_schedule_state])
nfe_slider.release(fn=update_nfe, inputs=nfe_slider,
outputs=[image, preset_dropdown, cache_schedule_state])
generate_btn.click(
infer,
inputs=[ref_audio_input, ref_text_input, gen_text_input, nfe_slider, cache_schedule_state, recent_input_state],
outputs=[audio_output, audio_output_cache, ref_text_input,
process_time, process_time_cache, recent_input_state],
)
demo.load(fn=load_default, outputs=[image, preset_dropdown])
demo.launch()
|