SkalskiP commited on
Commit
094752c
·
1 Parent(s): f232103

initial commit

Browse files
Files changed (3) hide show
  1. README.md +4 -4
  2. app.py +92 -0
  3. requirements.txt +3 -0
README.md CHANGED
@@ -1,8 +1,8 @@
1
  ---
2
- title: RF DETR
3
- emoji: 🏃
4
- colorFrom: blue
5
- colorTo: yellow
6
  sdk: gradio
7
  sdk_version: 5.22.0
8
  app_file: app.py
 
1
  ---
2
+ title: RF-DETR
3
+ emoji: 🔥
4
+ colorFrom: yellow
5
+ colorTo: pink
6
  sdk: gradio
7
  sdk_version: 5.22.0
8
  app_file: app.py
app.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import spaces
3
+ import supervision as sv
4
+ from rfdetr import RFDETRBase
5
+ from rfdetr.util.coco_classes import COCO_CLASSES
6
+
7
+ MARKDOWN = """
8
+ # RF-DETR 🔥
9
+
10
+ <div style="display: flex; align-items: center; gap: 8px;">
11
+ <a href="https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/how-to-finetune-rf-detr-on-detection-dataset.ipynb">
12
+ <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="colab" />
13
+ </a>
14
+ <a href="https://blog.roboflow.com/rf-detr">
15
+ <img src="https://raw.githubusercontent.com/roboflow-ai/notebooks/main/assets/badges/roboflow-blogpost.svg" alt="roboflow" />
16
+ </a>
17
+ <a href="https://github.com/roboflow/rf-detr">
18
+ <img src="https://badges.aleen42.com/src/github.svg" alt="roboflow" />
19
+ </a>
20
+ </div>
21
+
22
+ RF-DETR is a real-time, transformer-based object detection model architecture developed
23
+ by [Roboflow](https://roboflow.com/) and released under the Apache 2.0 license.
24
+ """
25
+
26
+ COLOR = sv.ColorPalette.from_hex([
27
+ "#ffff00", "#ff9b00", "#ff8080", "#ff66b2", "#ff66ff", "#b266ff",
28
+ "#9999ff", "#3399ff", "#66ffff", "#33ff99", "#66ff66", "#99ff00"
29
+ ])
30
+
31
+ MODEL = RFDETRBase()
32
+
33
+
34
+ @spaces.GPU()
35
+ def inference(image, confidence):
36
+ detections = MODEL.predict(image, threshold=confidence)
37
+
38
+ text_scale = sv.calculate_optimal_text_scale(resolution_wh=image.size)
39
+ thickness = sv.calculate_optimal_line_thickness(resolution_wh=image.size)
40
+
41
+ bbox_annotator = sv.BoxAnnotator(color=COLOR, thickness=thickness)
42
+ label_annotator = sv.LabelAnnotator(
43
+ color=COLOR,
44
+ text_color=sv.Color.BLACK,
45
+ text_scale=text_scale,
46
+ smart_position=True
47
+ )
48
+
49
+ labels = [
50
+ f"{COCO_CLASSES[class_id]} {confidence:.2f}"
51
+ for class_id, confidence
52
+ in zip(detections.class_id, detections.confidence)
53
+ ]
54
+
55
+ annotated_image = image.copy()
56
+ annotated_image = bbox_annotator.annotate(annotated_image, detections)
57
+ annotated_image = label_annotator.annotate(annotated_image, detections, labels)
58
+ return annotated_image
59
+
60
+ with gr.Blocks() as demo:
61
+ gr.Markdown(MARKDOWN)
62
+ with gr.Row():
63
+ with gr.Column():
64
+ input_image = gr.Image(
65
+ label="Input Image",
66
+ image_mode='RGB',
67
+ type='pil',
68
+ height=600
69
+ )
70
+ confidence_slider = gr.Slider(
71
+ label="Confidence",
72
+ minimum=0.0,
73
+ maximum=1.0,
74
+ step=0.05,
75
+ value=0.5,
76
+ )
77
+ submit_button = gr.Button("Submit")
78
+ with gr.Column():
79
+ output_image = gr.Image(
80
+ label="Input Image",
81
+ image_mode='RGB',
82
+ type='pil',
83
+ height=600
84
+ )
85
+
86
+ submit_button.click(
87
+ inference,
88
+ inputs=[input_image, confidence_slider],
89
+ outputs=output_image
90
+ )
91
+
92
+ demo.launch(debug=False, show_error=True)
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ gradio
2
+ spaces
3
+ rfdetr