update UI to support video inference
Browse files- app.py +120 -46
- utils/image.py +16 -0
app.py
CHANGED
@@ -1,22 +1,28 @@
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import supervision as sv
|
|
|
3 |
from rfdetr import RFDETRBase, RFDETRLarge
|
|
|
4 |
from rfdetr.util.coco_classes import COCO_CLASSES
|
5 |
|
|
|
6 |
from utils.video import create_directory
|
7 |
|
8 |
MARKDOWN = """
|
9 |
# RF-DETR 🔥
|
10 |
|
11 |
-
<div
|
12 |
<a href="https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/how-to-finetune-rf-detr-on-detection-dataset.ipynb">
|
13 |
-
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="colab"
|
14 |
</a>
|
15 |
<a href="https://blog.roboflow.com/rf-detr">
|
16 |
-
<img src="https://raw.githubusercontent.com/roboflow-ai/notebooks/main/assets/badges/roboflow-blogpost.svg" alt="roboflow"
|
17 |
</a>
|
18 |
<a href="https://github.com/roboflow/rf-detr">
|
19 |
-
<img src="https://badges.aleen42.com/src/github.svg" alt="roboflow"
|
20 |
</a>
|
21 |
</div>
|
22 |
|
@@ -40,13 +46,12 @@ VIDEO_TARGET_DIRECTORY = "tmp"
|
|
40 |
create_directory(directory_path=VIDEO_TARGET_DIRECTORY)
|
41 |
|
42 |
|
43 |
-
def
|
44 |
-
model_class = RFDETRBase if checkpoint == "base" else RFDETRLarge
|
45 |
-
model = model_class(resolution=resolution)
|
46 |
detections = model.predict(image, threshold=confidence)
|
47 |
|
48 |
-
|
49 |
-
|
|
|
50 |
|
51 |
bbox_annotator = sv.BoxAnnotator(color=COLOR, thickness=thickness)
|
52 |
label_annotator = sv.LabelAnnotator(
|
@@ -67,55 +72,124 @@ def inference(image, confidence: float, resolution: int, checkpoint: str):
|
|
67 |
annotated_image = label_annotator.annotate(annotated_image, detections, labels)
|
68 |
return annotated_image
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
with gr.Blocks() as demo:
|
71 |
gr.Markdown(MARKDOWN)
|
72 |
-
with gr.
|
73 |
-
with gr.
|
74 |
-
|
75 |
-
label="
|
76 |
image_mode='RGB',
|
77 |
type='pil',
|
78 |
height=600
|
79 |
)
|
80 |
-
|
81 |
-
label="
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
value=0.5,
|
86 |
-
)
|
87 |
-
resolution_slider = gr.Slider(
|
88 |
-
label="Inference resolution",
|
89 |
-
minimum=560,
|
90 |
-
maximum=1120,
|
91 |
-
step=56,
|
92 |
-
value=728,
|
93 |
)
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
label="Checkpoint",
|
97 |
choices=["base", "large"],
|
98 |
value="base"
|
99 |
)
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
height=600
|
107 |
)
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
demo.launch(debug=False, show_error=True)
|
|
|
1 |
+
from typing import Union
|
2 |
+
|
3 |
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
import supervision as sv
|
6 |
+
from PIL import Image
|
7 |
from rfdetr import RFDETRBase, RFDETRLarge
|
8 |
+
from rfdetr.detr import RFDETR
|
9 |
from rfdetr.util.coco_classes import COCO_CLASSES
|
10 |
|
11 |
+
from utils.image import calculate_resolution_wh
|
12 |
from utils.video import create_directory
|
13 |
|
14 |
MARKDOWN = """
|
15 |
# RF-DETR 🔥
|
16 |
|
17 |
+
<div>
|
18 |
<a href="https://colab.research.google.com/github/roboflow-ai/notebooks/blob/main/notebooks/how-to-finetune-rf-detr-on-detection-dataset.ipynb">
|
19 |
+
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="colab" style="display:inline-block;">
|
20 |
</a>
|
21 |
<a href="https://blog.roboflow.com/rf-detr">
|
22 |
+
<img src="https://raw.githubusercontent.com/roboflow-ai/notebooks/main/assets/badges/roboflow-blogpost.svg" alt="roboflow" style="display:inline-block;">
|
23 |
</a>
|
24 |
<a href="https://github.com/roboflow/rf-detr">
|
25 |
+
<img src="https://badges.aleen42.com/src/github.svg" alt="roboflow" style="display:inline-block;">
|
26 |
</a>
|
27 |
</div>
|
28 |
|
|
|
46 |
create_directory(directory_path=VIDEO_TARGET_DIRECTORY)
|
47 |
|
48 |
|
49 |
+
def detect_and_annotate(model: RFDETR, image: Union[Image.Image, np.ndarray], confidence: float):
|
|
|
|
|
50 |
detections = model.predict(image, threshold=confidence)
|
51 |
|
52 |
+
resolution_wh = calculate_resolution_wh(image)
|
53 |
+
text_scale = sv.calculate_optimal_text_scale(resolution_wh=resolution_wh) - 0.2
|
54 |
+
thickness = sv.calculate_optimal_line_thickness(resolution_wh=resolution_wh)
|
55 |
|
56 |
bbox_annotator = sv.BoxAnnotator(color=COLOR, thickness=thickness)
|
57 |
label_annotator = sv.LabelAnnotator(
|
|
|
72 |
annotated_image = label_annotator.annotate(annotated_image, detections, labels)
|
73 |
return annotated_image
|
74 |
|
75 |
+
|
76 |
+
def image_processing_inference(input_image: Image.Image, confidence: float, resolution: int, checkpoint: str):
|
77 |
+
model_class = RFDETRBase if checkpoint == "base" else RFDETRLarge
|
78 |
+
model = model_class(resolution=resolution)
|
79 |
+
return detect_and_annotate(model=model, image=input_image, confidence=confidence)
|
80 |
+
|
81 |
+
|
82 |
+
def video_processing_inference(input_video: str, confidence: float, resolution: int, checkpoint: str):
|
83 |
+
model_class = RFDETRBase if checkpoint == "base" else RFDETRLarge
|
84 |
+
model = model_class(resolution=resolution)
|
85 |
+
return input_video
|
86 |
+
|
87 |
with gr.Blocks() as demo:
|
88 |
gr.Markdown(MARKDOWN)
|
89 |
+
with gr.Tab("Image"):
|
90 |
+
with gr.Row():
|
91 |
+
image_processing_input_image = gr.Image(
|
92 |
+
label="Upload image",
|
93 |
image_mode='RGB',
|
94 |
type='pil',
|
95 |
height=600
|
96 |
)
|
97 |
+
image_processing_output_image = gr.Image(
|
98 |
+
label="Output image",
|
99 |
+
image_mode='RGB',
|
100 |
+
type='pil',
|
101 |
+
height=600
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
)
|
103 |
+
with gr.Row():
|
104 |
+
with gr.Column():
|
105 |
+
image_processing_confidence_slider = gr.Slider(
|
106 |
+
label="Confidence",
|
107 |
+
minimum=0.0,
|
108 |
+
maximum=1.0,
|
109 |
+
step=0.05,
|
110 |
+
value=0.5,
|
111 |
+
)
|
112 |
+
image_processing_resolution_slider = gr.Slider(
|
113 |
+
label="Inference resolution",
|
114 |
+
minimum=560,
|
115 |
+
maximum=1120,
|
116 |
+
step=56,
|
117 |
+
value=728,
|
118 |
+
)
|
119 |
+
image_processing_checkpoint_dropdown = gr.Dropdown(
|
120 |
label="Checkpoint",
|
121 |
choices=["base", "large"],
|
122 |
value="base"
|
123 |
)
|
124 |
+
with gr.Column():
|
125 |
+
image_processing_submit_button = gr.Button("Submit", value="primary")
|
126 |
+
|
127 |
+
gr.Examples(
|
128 |
+
fn=image_processing_inference,
|
129 |
+
examples=IMAGE_EXAMPLES,
|
130 |
+
inputs=[
|
131 |
+
image_processing_input_image,
|
132 |
+
image_processing_confidence_slider,
|
133 |
+
image_processing_resolution_slider,
|
134 |
+
image_processing_checkpoint_dropdown
|
135 |
+
],
|
136 |
+
outputs=image_processing_output_image,
|
137 |
+
cache_examples=True
|
138 |
+
)
|
139 |
+
|
140 |
+
image_processing_submit_button.click(
|
141 |
+
image_processing_inference,
|
142 |
+
inputs=[
|
143 |
+
image_processing_input_image,
|
144 |
+
image_processing_confidence_slider,
|
145 |
+
image_processing_resolution_slider,
|
146 |
+
image_processing_checkpoint_dropdown
|
147 |
+
],
|
148 |
+
outputs=image_processing_output_image
|
149 |
+
)
|
150 |
+
with gr.Tab("Video"):
|
151 |
+
with gr.Row():
|
152 |
+
video_processing_input_video = gr.Video(
|
153 |
+
label='Upload video',
|
154 |
height=600
|
155 |
)
|
156 |
+
video_processing_output_video = gr.Video(
|
157 |
+
label='Output video',
|
158 |
+
height=600
|
159 |
+
)
|
160 |
+
with gr.Row():
|
161 |
+
with gr.Column():
|
162 |
+
video_processing_confidence_slider = gr.Slider(
|
163 |
+
label="Confidence",
|
164 |
+
minimum=0.0,
|
165 |
+
maximum=1.0,
|
166 |
+
step=0.05,
|
167 |
+
value=0.5,
|
168 |
+
)
|
169 |
+
video_processing_resolution_slider = gr.Slider(
|
170 |
+
label="Inference resolution",
|
171 |
+
minimum=560,
|
172 |
+
maximum=1120,
|
173 |
+
step=56,
|
174 |
+
value=728,
|
175 |
+
)
|
176 |
+
video_processing_checkpoint_dropdown = gr.Dropdown(
|
177 |
+
label="Checkpoint",
|
178 |
+
choices=["base", "large"],
|
179 |
+
value="base"
|
180 |
+
)
|
181 |
+
with gr.Column():
|
182 |
+
video_processing_submit_button = gr.Button("Submit", value="primary")
|
183 |
+
|
184 |
+
video_processing_submit_button.click(
|
185 |
+
video_processing_inference,
|
186 |
+
inputs=[
|
187 |
+
video_processing_input_video,
|
188 |
+
video_processing_confidence_slider,
|
189 |
+
video_processing_resolution_slider,
|
190 |
+
video_processing_checkpoint_dropdown
|
191 |
+
],
|
192 |
+
outputs=video_processing_output_video
|
193 |
+
)
|
194 |
|
195 |
demo.launch(debug=False, show_error=True)
|
utils/image.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple, Union
|
2 |
+
from PIL import Image
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
def calculate_resolution_wh(image: Union[Image.Image, np.ndarray]) -> Tuple[int, int]:
|
6 |
+
|
7 |
+
if isinstance(image, Image.Image):
|
8 |
+
return image.size
|
9 |
+
elif isinstance(image, np.ndarray):
|
10 |
+
if image.ndim >= 2:
|
11 |
+
h, w = image.shape[:2]
|
12 |
+
return w, h
|
13 |
+
else:
|
14 |
+
raise ValueError("Input numpy array image must have at least 2 dimensions (height, width).")
|
15 |
+
else:
|
16 |
+
raise TypeError("Input image must be a Pillow Image or a numpy array.")
|