#refer llama recipes for more info https://github.com/huggingface/huggingface-llama-recipes/blob/main/inference-api.ipynb #huggingface-llama-recipes : https://github.com/huggingface/huggingface-llama-recipes/tree/main import gradio as gr from openai import OpenAI import os ACCESS_TOKEN = os.getenv("myHFtoken") print("Access token loaded.") client = OpenAI( base_url="https://api-inference.huggingface.co/v1/", api_key=ACCESS_TOKEN, ) print("Client initialized.") SYSTEM_PROMPTS = { "zh-HK": "用香港的廣東話(Cantonese)對話. No chatty. Answer in simple but accurate way.", "zh-TW": "Chat by Traditional Chinese language of Taiwan (zh-TW). No chatty. Answer in simple but accurate way.", "EN: General Assistant": "You are a helpful, respectful and honest assistant. Always provide accurate information and admit when you're not sure about something.", "EN: Code Helper": "You are a programming assistant. Help users with coding questions, debugging, and best practices. Provide clear explanations and code examples when appropriate.", "EN: Creative Writer": "You are a creative writing assistant. Help users with storytelling, character development, and creative writing techniques. Be imaginative and encouraging." } def respond( message, history: list[tuple[str, str]], preset_prompt, custom_prompt, max_tokens, temperature, top_p, model_name, ): print(f"Received message: {message}") print(f"History: {history}") system_message = custom_prompt if custom_prompt.strip() else SYSTEM_PROMPTS[preset_prompt] print(f"System message: {system_message}") print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") print(f"Selected model: {model_name}") messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) print(f"Added user message to context: {val[0]}") if val[1]: messages.append({"role": "assistant", "content": val[1]}) print(f"Added assistant message to context: {val[1]}") messages.append({"role": "user", "content": message}) response = "" print("Sending request to OpenAI API.") for message in client.chat.completions.create( model=model_name, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, messages=messages, ): token = message.choices[0].delta.content print(f"Received token: {token}") response += token yield response print("Completed response generation.") models = [ "ngxson/MiniThinky-v2-1B-Llama-3.2", "meta-llama/Llama-3.2-3B-Instruct", "PowerInfer/SmallThinker-3B-Preview", "NovaSky-AI/Sky-T1-32B-Preview", "Qwen/QwQ-32B-Preview", "Qwen/Qwen2.5-Coder-32B-Instruct", "microsoft/Phi-3-mini-128k-instruct", ] with gr.Blocks() as demo: gr.Markdown("# LLM Test") with gr.Row(): model_dropdown = gr.Dropdown( choices=models, value=models[0], label="Select Model:" ) # Create the chat components separately chatbot = gr.Chatbot(height=500) msg = gr.Textbox( show_label=False, placeholder="Enter text and press enter", container=False ) clear = gr.Button("Clear") # Additional inputs with gr.Accordion("Configuration", open=False): preset_prompt = gr.Dropdown( choices=list(SYSTEM_PROMPTS.keys()), value=list(SYSTEM_PROMPTS.keys())[0], label="Select System Prompt:" ) custom_prompt = gr.Textbox( value="", label="Custom System Prompt (leaves blank to use preset):", lines=2 ) max_tokens = gr.Slider( minimum=1, maximum=8192, value=2048, step=1, label="Max new tokens:" ) temperature = gr.Slider( minimum=0.1, maximum=1.0, value=0.3, step=0.1, label="Temperature:" ) top_p = gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P:" ) # Set up the chat functionality def user(user_message, history): return "", history + [[user_message, None]] def bot( history, preset_prompt, custom_prompt, max_tokens, temperature, top_p, model_name ): history[-1][1] = "" for character in respond( history[-1][0], history[:-1], preset_prompt, custom_prompt, max_tokens, temperature, top_p, model_name ): history[-1][1] = character yield history msg.submit( user, [msg, chatbot], [msg, chatbot], queue=False ).then( bot, [chatbot, preset_prompt, custom_prompt, max_tokens, temperature, top_p, model_dropdown], chatbot ) clear.click(lambda: None, None, chatbot, queue=False) print("Gradio interface initialized.") if __name__ == "__main__": print("Launching the demo application.") demo.launch()