File size: 16,809 Bytes
18cb951 d12c944 18cb951 d12c944 18cb951 d12c944 18cb951 27eb78c 18cb951 27eb78c 18cb951 d12c944 18cb951 d12c944 18cb951 83e4f6a 18cb951 2e6e2e9 18cb951 911815f d12c944 18cb951 2e6e2e9 95a19bd 18cb951 95a19bd 18cb951 2e6e2e9 95a19bd a167990 95a19bd 2e6e2e9 95a19bd 68e2774 95a19bd 68e2774 95a19bd 68e2774 95a19bd 18cb951 8baacca 18cb951 8baacca 18cb951 8baacca 18cb951 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 |
import os
import json
import numpy as np
import subprocess
import faiss
import cv2
import re
import gradio as gr
from sentence_transformers import SentenceTransformer
from openai import OpenAI
import logging
from PIL import Image
import base64
import io
deepseek_api_key = os.environ.get("DEEPSEEK_API_KEY", "YOUR_API_KEY")
client = OpenAI(
base_url="https://openrouter.ai/api/v1",
api_key=deepseek_api_key,
)
DATASET_PATH = "data"
JSON_PATH = f"{DATASET_PATH}/sign_language_data.json"
if os.path.exists(JSON_PATH):
with open(JSON_PATH, "r") as f:
dataset = json.load(f)
for item in dataset:
category = item["category"].lower().replace(" ", "_")
video_filename = os.path.basename(item["video_clip_path"])
item["video_clip_path"] = f"{DATASET_PATH}/clips/{category}/{video_filename}"
frame_filename = os.path.basename(item["frame_path"])
item["frame_path"] = f"{DATASET_PATH}/all_signs/{frame_filename}"
else:
dataset = []
print(f"Warning: {JSON_PATH} does not exist. Using empty dataset.")
logging.getLogger("sentence_transformers").setLevel(logging.ERROR)
print("Loading sentence transformer model...")
embed_model = SentenceTransformer("all-MiniLM-L6-v2")
dimension = 384
index = faiss.IndexFlatL2(dimension)
text_to_video = {}
idx_to_text = []
for item in dataset:
phrases = [item["text"]] + item.get("semantic_meaning", [])
for phrase in phrases:
embedding = embed_model.encode(phrase).astype(np.float32)
index.add(np.array([embedding]))
text_to_video[phrase] = item["video_clip_path"]
idx_to_text.append(phrase)
print(f"Indexed {len(idx_to_text)} phrases")
def list_available_phrases():
print("Available phrases in dataset:")
for idx, phrase in enumerate(text_to_video.keys()):
print(f"{idx+1}. '{phrase}'")
print(f"Total: {len(text_to_video)} phrases")
def preprocess_text(text):
emoji_pattern = re.compile("["
u"\U0001F600-\U0001F64F"
u"\U0001F300-\U0001F5FF"
u"\U0001F680-\U0001F6FF"
u"\U0001F700-\U0001F77F"
u"\U0001F780-\U0001F7FF"
u"\U0001F800-\U0001F8FF"
u"\U0001F900-\U0001F9FF"
u"\U0001FA00-\U0001FA6F"
u"\U0001FA70-\U0001FAFF"
u"\U00002702-\U000027B0"
u"\U000024C2-\U0001F251"
"]+", flags=re.UNICODE)
text = emoji_pattern.sub(r'', text)
text = re.sub(r'[^\w\s\?\/]', '', text)
text = re.sub(r'\s+', ' ', text).strip()
return text
def refine_sentence_with_deepseek(text):
text = preprocess_text(text)
prompt = f"""
Convert the following sentence into a sign-language-friendly version:
- Remove unnecessary words like articles (a, an, the).
- Keep essential words like pronouns (I, you, we, they).
- Maintain question words (what, where, when, why, how).
- Ensure verbs and key actions are included.
- Reorder words to match sign language grammar.
- IMPORTANT: Format your response with "SIGN_LANGUAGE_VERSION: [your simplified phrase]" at the beginning.
- Sign language often places topic first, then comment (e.g., "READY YOU?" instead of "YOU READY?").
Sentence: "{text}"
"""
try:
completion = client.chat.completions.create(
model="deepseek/deepseek-r1:free",
messages=[{"role": "user", "content": prompt}],
temperature=0.3
)
full_response = completion.choices[0].message.content.strip()
patterns = [
r"SIGN_LANGUAGE_VERSION:\s*(.+?)(?:\n|$)",
r"\*\*Signs?\*\*:?\s*(.+?)(?:\n|$)",
r"\*\*Sign-language-friendly version:\*\*\s*(.+?)(?:\n|$)",
r"(?:^|\n)([A-Z\s\?\!]+)(?:\n|$)"
]
for pattern in patterns:
match = re.search(pattern, full_response, re.MULTILINE)
if match:
refined_text = match.group(1).strip()
return refined_text
first_line = full_response.split('\n')[0].strip()
return first_line
except Exception as e:
print(f"Error with DeepSeek API: {str(e)}")
words = text.split()
filtered_words = [w for w in words if w.lower() not in ['a', 'an', 'the', 'is', 'are', 'am']]
return ' '.join(filtered_words)
def retrieve_video(text, debug=False, similarity_threshold=0.9):
if not text or text.isspace():
return None
text = preprocess_text(text)
if debug:
print(f"Creating embedding for '{text}'")
# Handle special case for "I"
if text.lower() == "i":
if "I/me" in text_to_video:
if debug:
print(f" Direct mapping found: '{text}' → 'I/me'")
return text_to_video["I/me"]
if index.ntotal == 0:
if debug:
print("No items in the index")
return None
query_embedding = embed_model.encode(text).astype(np.float32)
distances, closest_idx = index.search(np.array([query_embedding]), min(3, index.ntotal)) # Get top matches
closest_texts = [idx_to_text[idx] for idx in closest_idx[0]]
similarity_scores = distances[0]
if debug:
print(f"Top matches for '{text}':")
for i, (phrase, score) in enumerate(zip(closest_texts, similarity_scores)):
print(f" {i+1}. '{phrase}' (score: {score:.4f})")
if len(similarity_scores) > 0 and similarity_scores[0] < similarity_threshold:
closest_text = closest_texts[0]
query_word_count = len(text.split())
match_word_count = len(closest_text.split())
if query_word_count > 1 and match_word_count == 1:
if debug:
print(f"Rejecting single-word match '{closest_text}' for multi-word query '{text}'")
return None
if debug:
print(f" Found match: '{closest_text}' with score {similarity_scores[0]:.4f}")
return text_to_video.get(closest_text, None)
else:
if debug:
print(f"No match found with similarity below threshold {similarity_threshold}")
return None
def merge_videos(video_list, output_path="temp/output.mp4"):
os.makedirs("temp", exist_ok=True)
if not video_list:
return None
if len(video_list) == 1:
try:
import shutil
shutil.copy(video_list[0], output_path)
return output_path
except Exception as e:
print(f"Error copying single video: {e}")
return None
verified_paths = []
for path in video_list:
if os.path.exists(path):
verified_paths.append(path)
else:
print(f"Warning: Video path does not exist: {path}")
if not verified_paths:
print("No valid video paths found")
return None
list_path = "temp/video_list.txt"
with open(list_path, "w") as f:
for path in verified_paths:
abs_path = os.path.abspath(path)
f.write(f"file '{abs_path}'\n")
abs_output = os.path.abspath(output_path)
abs_list = os.path.abspath(list_path)
command = f"ffmpeg -f concat -safe 0 -i '{abs_list}' -c copy '{abs_output}' -y"
print(f"Running command: {command}")
process = subprocess.run(command, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
if process.returncode != 0:
print(f"FFmpeg error: {process.stderr.decode()}")
return None
return output_path
def save_video(video_path, output_path="temp/display_output.mp4"):
os.makedirs("temp", exist_ok=True)
if not video_path or not os.path.exists(video_path):
return None
if video_path != output_path:
os.system(f"cp '{video_path}' '{output_path}'")
return output_path
def text_to_sign_pipeline(user_input, debug=False):
user_input = preprocess_text(user_input)
if debug:
print(f"Processing input: '{user_input}'")
has_multiple_words = len(user_input.split()) > 1
if not has_multiple_words:
direct_video = retrieve_video(user_input, debug=debug)
if direct_video:
if debug:
print(f"Single word match found for '{user_input}'")
return save_video(direct_video)
sign_friendly_sentence = refine_sentence_with_deepseek(user_input)
if debug:
print(f"DeepSeek refined input to: '{sign_friendly_sentence}'")
full_sentence_video = retrieve_video(sign_friendly_sentence, debug=debug)
if full_sentence_video:
if debug:
print(f"Found full sentence match for '{sign_friendly_sentence}'")
return save_video(full_sentence_video)
words = sign_friendly_sentence.split()
video_paths = []
if debug:
print(f"No full sentence match. Trying word-by-word approach for: {words}")
for word in words:
clean_word = preprocess_text(word).replace('?', '')
if not clean_word or clean_word.isspace():
continue
word_video = retrieve_video(clean_word, debug=debug)
if word_video:
print(f" Found video for word: '{clean_word}'")
video_paths.append(word_video)
else:
print(f" No video found for word: '{clean_word}'")
if not video_paths:
print(" No videos found for any words in the sentence")
return None
if debug:
print(f"Found videos for {len(video_paths)} words, merging...")
merged_video = merge_videos(video_paths)
return save_video(merged_video)
def encode_image_to_base64(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
def preprocess_image(image_path):
img = cv2.imread(image_path)
if img is None:
return None
height, width = img.shape[:2]
right_side = img[:, width//2:width]
os.makedirs("temp", exist_ok=True)
cropped_path = "temp/cropped_image.jpg"
cv2.imwrite(cropped_path, right_side)
return cropped_path
def detect_text_in_image(image_path, debug=False):
base64_image = encode_image_to_base64(image_path)
prompt = """
Is there any prominent text label or sign language text in this image?
Answer with ONLY "YES" or "NO".
"""
try:
completion = client.chat.completions.create(
model="qwen/qwen2.5-vl-3b-instruct:free",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
]
}
],
temperature=0.3
)
response = completion.choices[0].message.content.strip().upper()
if debug:
print(f"Text detection response: {response}")
return "YES" in response
except Exception as e:
if debug:
print(f"Error in text detection: {str(e)}")
return False
def image_to_text_with_qwen(image_path, debug=False):
base64_image = encode_image_to_base64(image_path)
has_text = detect_text_in_image(image_path, debug)
if has_text:
cropped_image_path = preprocess_image(image_path)
if cropped_image_path:
cropped_base64 = encode_image_to_base64(cropped_image_path)
prompt = """
Extract ONLY the main text label from this image. I'm looking for a single word or short phrase
that appears as the main text (like "AFTERNOON"). Ignore any numbers, categories, or other text.
Provide ONLY the extracted text without any other explanation or context.
"""
try:
completion = client.chat.completions.create(
model="qwen/qwen2.5-vl-3b-instruct:free",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{cropped_base64}"}}
]
}
],
temperature=0.3
)
response = completion.choices[0].message.content.strip()
if debug:
print(f"Qwen VL text extraction response: {response}")
cleaned_text = re.sub(r"^(the|main|text|label|is|:|\.|\s)+", "", response, flags=re.IGNORECASE)
cleaned_text = re.sub(r'["\'\(\)]', '', cleaned_text)
cleaned_text = cleaned_text.strip().upper()
if cleaned_text:
return cleaned_text, "text"
except Exception as e:
if debug:
print(f"Error using Qwen VL for text extraction: {str(e)}")
prompt = """
Describe this image in a SINGLE WORD only.
Focus on the main subject (like "MAN", "WOMAN", "HOUSE", "HAPPY", "SAD", etc.).
Provide ONLY this single word without any punctuation or explanation.
"""
try:
completion = client.chat.completions.create(
model="qwen/qwen2.5-vl-3b-instruct:free",
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": prompt},
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"}}
]
}
],
temperature=0.3
)
response = completion.choices[0].message.content.strip()
if debug:
print(f"Qwen VL caption response: {response}")
cleaned_caption = re.sub(r'[^\w\s]', '', response)
cleaned_caption = cleaned_caption.strip().split()[0]
cleaned_caption = cleaned_caption.upper()
return cleaned_caption, "caption"
except Exception as e:
if debug:
print(f"Error using Qwen VL for captioning: {str(e)}")
return "ERROR", "error"
def process_text(input_text):
if not input_text or input_text.isspace():
return "Please enter some text to convert."
final_video = text_to_sign_pipeline(input_text, debug=True)
if final_video:
return final_video
else:
return "Sorry, no matching sign language video found."
def process_image(input_image):
os.makedirs("temp", exist_ok=True)
image_path = "temp/uploaded_image.jpg"
input_image.save(image_path)
extracted_text, source_type = image_to_text_with_qwen(image_path, debug=True)
if extracted_text == "ERROR":
return "Error processing image", None
sign_video = text_to_sign_pipeline(extracted_text, debug=True)
if source_type == "text":
result_text = f"Extracted text: {extracted_text}"
else:
result_text = f"Generated caption: {extracted_text}"
return result_text, sign_video if sign_video else "No matching sign language video found"
with gr.Blocks() as app:
gr.Markdown("# Sign Language Conversion")
with gr.Tabs():
with gr.Tab("Text to Sign"):
text_input = gr.Textbox(label="Enter text to convert to sign language")
text_button = gr.Button("Convert Text to Sign")
text_output = gr.Video(label="Sign Language Output")
text_button.click(process_text, inputs=text_input, outputs=text_output)
with gr.Tab("Image to Text/Caption and Sign"):
image_input = gr.Image(type="pil", label="Upload image")
image_button = gr.Button("Process Image and Convert to Sign")
extracted_text_output = gr.Textbox(label="Extracted Text/Caption")
image_output = gr.Video(label="Sign Language Output")
image_button.click(
process_image,
inputs=image_input,
outputs=[extracted_text_output, image_output]
)
app.launch() |