Spaces:
Running
on
Zero
Running
on
Zero
Upload folder using huggingface_hub
Browse files- app.py +1 -1
- soulxpodcast/__pycache__/config.cpython-311.pyc +0 -0
- soulxpodcast/config.py +10 -9
- soulxpodcast/engine/__pycache__/__init__.cpython-311.pyc +0 -0
- soulxpodcast/engine/__pycache__/llm_engine.cpython-311.pyc +0 -0
- soulxpodcast/engine/llm_engine.py +4 -6
- soulxpodcast/models/__pycache__/soulxpodcast.cpython-311.pyc +0 -0
- soulxpodcast/models/modules/__pycache__/__init__.cpython-311.pyc +0 -0
- soulxpodcast/models/modules/__pycache__/flow.cpython-311.pyc +0 -0
- soulxpodcast/models/modules/__pycache__/hifigan.cpython-311.pyc +0 -0
- soulxpodcast/models/modules/__pycache__/sampler.cpython-311.pyc +0 -0
- soulxpodcast/models/modules/flow_components/__pycache__/__init__.cpython-311.pyc +0 -0
- soulxpodcast/models/modules/flow_components/__pycache__/estimator.cpython-311.pyc +0 -0
- soulxpodcast/models/modules/flow_components/__pycache__/upsample_encoder.cpython-311.pyc +0 -0
- soulxpodcast/models/modules/flow_components/upsample_encoder.py +1 -2
- soulxpodcast/models/modules/hifigan.py +1 -1
- soulxpodcast/models/modules/hifigan_components/__pycache__/__init__.cpython-311.pyc +0 -0
- soulxpodcast/models/modules/hifigan_components/__pycache__/layers.cpython-311.pyc +0 -0
- soulxpodcast/models/soulxpodcast.py +13 -37
- soulxpodcast/utils/__pycache__/__init__.cpython-311.pyc +0 -0
- soulxpodcast/utils/__pycache__/audio.cpython-311.pyc +0 -0
- soulxpodcast/utils/__pycache__/commons.cpython-311.pyc +0 -0
- soulxpodcast/utils/__pycache__/dataloader.cpython-311.pyc +0 -0
- soulxpodcast/utils/__pycache__/infer_utils.cpython-311.pyc +0 -0
- soulxpodcast/utils/__pycache__/parser.cpython-311.pyc +0 -0
- soulxpodcast/utils/__pycache__/text.cpython-311.pyc +0 -0
- soulxpodcast/utils/audio.py +47 -1
- soulxpodcast/utils/commons.py +10 -0
- soulxpodcast/utils/dataloader.py +32 -21
- soulxpodcast/utils/infer_utils.py +95 -0
- soulxpodcast/utils/parser.py +87 -0
- soulxpodcast/utils/text.py +40 -1
app.py
CHANGED
|
@@ -248,7 +248,7 @@ def process_single(target_text_list, prompt_wav_list, prompt_text_list, use_dial
|
|
| 248 |
text, spk = match.group(2), int(match.group(1)[2])-1
|
| 249 |
spks.append(spk)
|
| 250 |
texts.append(text)
|
| 251 |
-
|
| 252 |
global dataset
|
| 253 |
dataitem = {"key": "001", "prompt_text": prompt_text_list, "prompt_wav": prompt_wav_list,
|
| 254 |
"text": texts, "spk": spks, }
|
|
|
|
| 248 |
text, spk = match.group(2), int(match.group(1)[2])-1
|
| 249 |
spks.append(spk)
|
| 250 |
texts.append(text)
|
| 251 |
+
import pdb;pdb.set_trace()
|
| 252 |
global dataset
|
| 253 |
dataitem = {"key": "001", "prompt_text": prompt_text_list, "prompt_wav": prompt_wav_list,
|
| 254 |
"text": texts, "spk": spks, }
|
soulxpodcast/__pycache__/config.cpython-311.pyc
CHANGED
|
Binary files a/soulxpodcast/__pycache__/config.cpython-311.pyc and b/soulxpodcast/__pycache__/config.cpython-311.pyc differ
|
|
|
soulxpodcast/config.py
CHANGED
|
@@ -8,6 +8,7 @@ import torch
|
|
| 8 |
from transformers import AutoConfig
|
| 9 |
from transformers import PretrainedConfig
|
| 10 |
|
|
|
|
| 11 |
@dataclass
|
| 12 |
class SoulXPodcastLLMConfig:
|
| 13 |
architectures: list[str] = field(default_factory=lambda: ["Qwen3ForCausalLM"])
|
|
@@ -47,11 +48,11 @@ class SoulXPodcastLLMConfig:
|
|
| 47 |
json_file: Optional[str] = None
|
| 48 |
):
|
| 49 |
"""
|
| 50 |
-
Create instance from initial values and JSON data
|
| 51 |
|
| 52 |
Args:
|
| 53 |
-
initial_values:
|
| 54 |
-
json_file: JSON file
|
| 55 |
|
| 56 |
Returns:
|
| 57 |
SoulXPodcastLLMConfig instance
|
|
@@ -76,7 +77,7 @@ class SoulXPodcastLLMConfig:
|
|
| 76 |
|
| 77 |
@staticmethod
|
| 78 |
def _load_json_file(file_path: str) -> Dict[str, Any]:
|
| 79 |
-
"""
|
| 80 |
path = Path(file_path)
|
| 81 |
if not path.exists():
|
| 82 |
return {}
|
|
@@ -94,7 +95,7 @@ class AutoPretrainedConfig(PretrainedConfig):
|
|
| 94 |
|
| 95 |
@classmethod
|
| 96 |
def from_dataclass(cls, dataclass_config):
|
| 97 |
-
"""
|
| 98 |
if not is_dataclass(dataclass_config):
|
| 99 |
raise ValueError("Input must be a dataclass instance")
|
| 100 |
|
|
@@ -108,8 +109,8 @@ class SamplingParams:
|
|
| 108 |
repetition_penalty: float = 1.25
|
| 109 |
top_k: int = 100
|
| 110 |
top_p: float = 0.9
|
| 111 |
-
max_tokens: int = 3000
|
| 112 |
min_tokens: int = 8
|
|
|
|
| 113 |
stop_token_ids: list[int] = field(default_factory=lambda: [151675])
|
| 114 |
|
| 115 |
use_ras: bool = True
|
|
@@ -127,12 +128,12 @@ class Config:
|
|
| 127 |
hf_config: SoulXPodcastLLMConfig | AutoConfig = field(default_factory=SoulXPodcastLLMConfig)
|
| 128 |
eos: int = -1
|
| 129 |
llm_engine: str = "hf"
|
| 130 |
-
max_turn_size: int =
|
| 131 |
turn_tokens_threshold: int = 6192
|
| 132 |
|
| 133 |
prompt_context: int = 2
|
| 134 |
-
history_context: int =
|
| 135 |
-
history_text_context: int =
|
| 136 |
|
| 137 |
def __post_init__(self):
|
| 138 |
assert os.path.isdir(self.model)
|
|
|
|
| 8 |
from transformers import AutoConfig
|
| 9 |
from transformers import PretrainedConfig
|
| 10 |
|
| 11 |
+
|
| 12 |
@dataclass
|
| 13 |
class SoulXPodcastLLMConfig:
|
| 14 |
architectures: list[str] = field(default_factory=lambda: ["Qwen3ForCausalLM"])
|
|
|
|
| 48 |
json_file: Optional[str] = None
|
| 49 |
):
|
| 50 |
"""
|
| 51 |
+
Create an instance from initial values and JSON data.
|
| 52 |
|
| 53 |
Args:
|
| 54 |
+
initial_values: Dictionary of initial values (highest priority)
|
| 55 |
+
json_file: Path to JSON file
|
| 56 |
|
| 57 |
Returns:
|
| 58 |
SoulXPodcastLLMConfig instance
|
|
|
|
| 77 |
|
| 78 |
@staticmethod
|
| 79 |
def _load_json_file(file_path: str) -> Dict[str, Any]:
|
| 80 |
+
"""Load data from a JSON file"""
|
| 81 |
path = Path(file_path)
|
| 82 |
if not path.exists():
|
| 83 |
return {}
|
|
|
|
| 95 |
|
| 96 |
@classmethod
|
| 97 |
def from_dataclass(cls, dataclass_config):
|
| 98 |
+
"""Automatically create configuration from any dataclass"""
|
| 99 |
if not is_dataclass(dataclass_config):
|
| 100 |
raise ValueError("Input must be a dataclass instance")
|
| 101 |
|
|
|
|
| 109 |
repetition_penalty: float = 1.25
|
| 110 |
top_k: int = 100
|
| 111 |
top_p: float = 0.9
|
|
|
|
| 112 |
min_tokens: int = 8
|
| 113 |
+
max_tokens: int = 3000
|
| 114 |
stop_token_ids: list[int] = field(default_factory=lambda: [151675])
|
| 115 |
|
| 116 |
use_ras: bool = True
|
|
|
|
| 128 |
hf_config: SoulXPodcastLLMConfig | AutoConfig = field(default_factory=SoulXPodcastLLMConfig)
|
| 129 |
eos: int = -1
|
| 130 |
llm_engine: str = "hf"
|
| 131 |
+
max_turn_size: int = 10
|
| 132 |
turn_tokens_threshold: int = 6192
|
| 133 |
|
| 134 |
prompt_context: int = 2
|
| 135 |
+
history_context: int = 2
|
| 136 |
+
history_text_context: int = 2
|
| 137 |
|
| 138 |
def __post_init__(self):
|
| 139 |
assert os.path.isdir(self.model)
|
soulxpodcast/engine/__pycache__/__init__.cpython-311.pyc
CHANGED
|
Binary files a/soulxpodcast/engine/__pycache__/__init__.cpython-311.pyc and b/soulxpodcast/engine/__pycache__/__init__.cpython-311.pyc differ
|
|
|
soulxpodcast/engine/__pycache__/llm_engine.cpython-311.pyc
CHANGED
|
Binary files a/soulxpodcast/engine/__pycache__/llm_engine.cpython-311.pyc and b/soulxpodcast/engine/__pycache__/llm_engine.cpython-311.pyc differ
|
|
|
soulxpodcast/engine/llm_engine.py
CHANGED
|
@@ -1,9 +1,9 @@
|
|
|
|
|
| 1 |
import types
|
| 2 |
import atexit
|
| 3 |
-
from dataclasses import fields, asdict
|
| 4 |
from time import perf_counter
|
| 5 |
-
import os
|
| 6 |
from functools import partial
|
|
|
|
| 7 |
|
| 8 |
import torch
|
| 9 |
import torch.multiprocessing as mp
|
|
@@ -17,8 +17,8 @@ try:
|
|
| 17 |
except ImportError:
|
| 18 |
SUPPORT_VLLM = False
|
| 19 |
|
| 20 |
-
from soulxpodcast.models.modules.sampler import _ras_sample_hf_engine
|
| 21 |
from soulxpodcast.config import Config, SamplingParams
|
|
|
|
| 22 |
|
| 23 |
class HFLLMEngine:
|
| 24 |
|
|
@@ -41,7 +41,6 @@ class HFLLMEngine:
|
|
| 41 |
past_key_values=None,
|
| 42 |
) -> dict:
|
| 43 |
|
| 44 |
-
|
| 45 |
stopping_criteria = StoppingCriteriaList([EosTokenCriteria(eos_token_id=self.config.hf_config.eos_token_id)])
|
| 46 |
if sampling_param.use_ras:
|
| 47 |
sample_hf_engine_handler = partial(_ras_sample_hf_engine,
|
|
@@ -63,7 +62,6 @@ class HFLLMEngine:
|
|
| 63 |
min_new_tokens=sampling_param.min_tokens,
|
| 64 |
max_new_tokens=sampling_param.max_tokens,
|
| 65 |
temperature=sampling_param.temperature,
|
| 66 |
-
repetition_penalty=sampling_param.repetition_penalty,
|
| 67 |
stopping_criteria=stopping_criteria,
|
| 68 |
past_key_values=past_key_values,
|
| 69 |
custom_generate=sample_hf_engine_handler,
|
|
@@ -90,7 +88,7 @@ class VLLMEngine:
|
|
| 90 |
self.device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 91 |
os.environ["VLLM_USE_V1"] = "0"
|
| 92 |
if SUPPORT_VLLM:
|
| 93 |
-
self.model = LLM(model=model, enforce_eager=True, dtype="bfloat16", max_model_len=8192
|
| 94 |
else:
|
| 95 |
raise ImportError("Not Support VLLM now!!!")
|
| 96 |
self.config = config
|
|
|
|
| 1 |
+
import os
|
| 2 |
import types
|
| 3 |
import atexit
|
|
|
|
| 4 |
from time import perf_counter
|
|
|
|
| 5 |
from functools import partial
|
| 6 |
+
from dataclasses import fields, asdict
|
| 7 |
|
| 8 |
import torch
|
| 9 |
import torch.multiprocessing as mp
|
|
|
|
| 17 |
except ImportError:
|
| 18 |
SUPPORT_VLLM = False
|
| 19 |
|
|
|
|
| 20 |
from soulxpodcast.config import Config, SamplingParams
|
| 21 |
+
from soulxpodcast.models.modules.sampler import _ras_sample_hf_engine
|
| 22 |
|
| 23 |
class HFLLMEngine:
|
| 24 |
|
|
|
|
| 41 |
past_key_values=None,
|
| 42 |
) -> dict:
|
| 43 |
|
|
|
|
| 44 |
stopping_criteria = StoppingCriteriaList([EosTokenCriteria(eos_token_id=self.config.hf_config.eos_token_id)])
|
| 45 |
if sampling_param.use_ras:
|
| 46 |
sample_hf_engine_handler = partial(_ras_sample_hf_engine,
|
|
|
|
| 62 |
min_new_tokens=sampling_param.min_tokens,
|
| 63 |
max_new_tokens=sampling_param.max_tokens,
|
| 64 |
temperature=sampling_param.temperature,
|
|
|
|
| 65 |
stopping_criteria=stopping_criteria,
|
| 66 |
past_key_values=past_key_values,
|
| 67 |
custom_generate=sample_hf_engine_handler,
|
|
|
|
| 88 |
self.device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 89 |
os.environ["VLLM_USE_V1"] = "0"
|
| 90 |
if SUPPORT_VLLM:
|
| 91 |
+
self.model = LLM(model=model, enforce_eager=True, dtype="bfloat16", max_model_len=8192)
|
| 92 |
else:
|
| 93 |
raise ImportError("Not Support VLLM now!!!")
|
| 94 |
self.config = config
|
soulxpodcast/models/__pycache__/soulxpodcast.cpython-311.pyc
CHANGED
|
Binary files a/soulxpodcast/models/__pycache__/soulxpodcast.cpython-311.pyc and b/soulxpodcast/models/__pycache__/soulxpodcast.cpython-311.pyc differ
|
|
|
soulxpodcast/models/modules/__pycache__/__init__.cpython-311.pyc
CHANGED
|
Binary files a/soulxpodcast/models/modules/__pycache__/__init__.cpython-311.pyc and b/soulxpodcast/models/modules/__pycache__/__init__.cpython-311.pyc differ
|
|
|
soulxpodcast/models/modules/__pycache__/flow.cpython-311.pyc
CHANGED
|
Binary files a/soulxpodcast/models/modules/__pycache__/flow.cpython-311.pyc and b/soulxpodcast/models/modules/__pycache__/flow.cpython-311.pyc differ
|
|
|
soulxpodcast/models/modules/__pycache__/hifigan.cpython-311.pyc
CHANGED
|
Binary files a/soulxpodcast/models/modules/__pycache__/hifigan.cpython-311.pyc and b/soulxpodcast/models/modules/__pycache__/hifigan.cpython-311.pyc differ
|
|
|
soulxpodcast/models/modules/__pycache__/sampler.cpython-311.pyc
CHANGED
|
Binary files a/soulxpodcast/models/modules/__pycache__/sampler.cpython-311.pyc and b/soulxpodcast/models/modules/__pycache__/sampler.cpython-311.pyc differ
|
|
|
soulxpodcast/models/modules/flow_components/__pycache__/__init__.cpython-311.pyc
CHANGED
|
Binary files a/soulxpodcast/models/modules/flow_components/__pycache__/__init__.cpython-311.pyc and b/soulxpodcast/models/modules/flow_components/__pycache__/__init__.cpython-311.pyc differ
|
|
|
soulxpodcast/models/modules/flow_components/__pycache__/estimator.cpython-311.pyc
CHANGED
|
Binary files a/soulxpodcast/models/modules/flow_components/__pycache__/estimator.cpython-311.pyc and b/soulxpodcast/models/modules/flow_components/__pycache__/estimator.cpython-311.pyc differ
|
|
|
soulxpodcast/models/modules/flow_components/__pycache__/upsample_encoder.cpython-311.pyc
CHANGED
|
Binary files a/soulxpodcast/models/modules/flow_components/__pycache__/upsample_encoder.cpython-311.pyc and b/soulxpodcast/models/modules/flow_components/__pycache__/upsample_encoder.cpython-311.pyc differ
|
|
|
soulxpodcast/models/modules/flow_components/upsample_encoder.py
CHANGED
|
@@ -493,8 +493,7 @@ class MultiHeadedAttention(nn.Module):
|
|
| 493 |
the mask is in (#batch, L, L) shape.
|
| 494 |
4.If the different position in decoder see different block
|
| 495 |
of the encoder, such as Mocha, the passed in mask could be
|
| 496 |
-
in (#batch, L, T) shape.
|
| 497 |
-
CosyVoice.
|
| 498 |
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
|
| 499 |
where `cache_t == chunk_size * num_decoding_left_chunks`
|
| 500 |
and `head * d_k == size`
|
|
|
|
| 493 |
the mask is in (#batch, L, L) shape.
|
| 494 |
4.If the different position in decoder see different block
|
| 495 |
of the encoder, such as Mocha, the passed in mask could be
|
| 496 |
+
in (#batch, L, T) shape.
|
|
|
|
| 497 |
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2),
|
| 498 |
where `cache_t == chunk_size * num_decoding_left_chunks`
|
| 499 |
and `head * d_k == size`
|
soulxpodcast/models/modules/hifigan.py
CHANGED
|
@@ -231,7 +231,7 @@ class HiFTGenerator(nn.Module):
|
|
| 231 |
phase = torch.sin(x[:, self.istft_params["n_fft"] // 2 + 1:, :])
|
| 232 |
|
| 233 |
x = self._istft(magnitude, phase)
|
| 234 |
-
x = torch.clamp(x
|
| 235 |
return x
|
| 236 |
|
| 237 |
@torch.inference_mode()
|
|
|
|
| 231 |
phase = torch.sin(x[:, self.istft_params["n_fft"] // 2 + 1:, :])
|
| 232 |
|
| 233 |
x = self._istft(magnitude, phase)
|
| 234 |
+
x = torch.clamp(x, -self.audio_limit, self.audio_limit)
|
| 235 |
return x
|
| 236 |
|
| 237 |
@torch.inference_mode()
|
soulxpodcast/models/modules/hifigan_components/__pycache__/__init__.cpython-311.pyc
CHANGED
|
Binary files a/soulxpodcast/models/modules/hifigan_components/__pycache__/__init__.cpython-311.pyc and b/soulxpodcast/models/modules/hifigan_components/__pycache__/__init__.cpython-311.pyc differ
|
|
|
soulxpodcast/models/modules/hifigan_components/__pycache__/layers.cpython-311.pyc
CHANGED
|
Binary files a/soulxpodcast/models/modules/hifigan_components/__pycache__/layers.cpython-311.pyc and b/soulxpodcast/models/modules/hifigan_components/__pycache__/layers.cpython-311.pyc differ
|
|
|
soulxpodcast/models/soulxpodcast.py
CHANGED
|
@@ -1,7 +1,8 @@
|
|
| 1 |
import time
|
| 2 |
from datetime import datetime
|
| 3 |
-
|
| 4 |
from tqdm import tqdm
|
|
|
|
| 5 |
from copy import deepcopy
|
| 6 |
|
| 7 |
import numpy as np
|
|
@@ -55,11 +56,12 @@ class SoulXPodcast(torch.nn.Module):
|
|
| 55 |
spk_emb_for_flow: torch.Tensor,
|
| 56 |
sampling_params: SamplingParams | list[SamplingParams],
|
| 57 |
spk_ids: list[list[int]],
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
**kwargs,
|
| 62 |
):
|
|
|
|
| 63 |
prompt_size, turn_size = len(prompt_mels_for_llm), len(text_tokens_for_llm)
|
| 64 |
|
| 65 |
|
|
@@ -91,37 +93,16 @@ class SoulXPodcast(torch.nn.Module):
|
|
| 91 |
prompt_inputs = []
|
| 92 |
history_inputs = []
|
| 93 |
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
for i in range(prompt_size):
|
| 116 |
speech_tokens_i = [token+self.config.hf_config.speech_token_offset for token in prompt_speech_tokens[i].tolist()]
|
| 117 |
speech_tokens_i += [self.config.hf_config.eos_token_id]
|
| 118 |
-
if
|
| 119 |
-
|
| 120 |
if i>0:
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
prompt_inputs.append(
|
| 124 |
-
history_inputs.append(
|
| 125 |
else:
|
| 126 |
prompt_inputs.append(prompt_text_tokens_for_llm[i] + speech_tokens_i )
|
| 127 |
history_inputs.append(prompt_text_tokens_for_llm[i] + speech_tokens_i )
|
|
@@ -164,7 +145,6 @@ class SoulXPodcast(torch.nn.Module):
|
|
| 164 |
flow_inputs_len = torch.tensor([len(prompt_speech_token) + len(generated_speech_tokens)])
|
| 165 |
|
| 166 |
|
| 167 |
-
|
| 168 |
start_idx = spk_ids[i]
|
| 169 |
prompt_mels = prompt_mels_for_flow[start_idx][None]
|
| 170 |
prompt_mels_lens = prompt_mels_lens_for_flow[start_idx][None]
|
|
@@ -180,11 +160,7 @@ class SoulXPodcast(torch.nn.Module):
|
|
| 180 |
|
| 181 |
|
| 182 |
mel = generated_mels[:, :, prompt_mels_lens[0].item():generated_mels_lens[0].item()]
|
| 183 |
-
|
| 184 |
-
wav, _ = self.hift(speech_feat=mel)
|
| 185 |
-
except Exception as e:
|
| 186 |
-
import pdb;pdb.set_trace()
|
| 187 |
-
print(e)
|
| 188 |
generated_wavs.append(wav)
|
| 189 |
|
| 190 |
|
|
|
|
| 1 |
import time
|
| 2 |
from datetime import datetime
|
| 3 |
+
|
| 4 |
from tqdm import tqdm
|
| 5 |
+
from itertools import chain
|
| 6 |
from copy import deepcopy
|
| 7 |
|
| 8 |
import numpy as np
|
|
|
|
| 56 |
spk_emb_for_flow: torch.Tensor,
|
| 57 |
sampling_params: SamplingParams | list[SamplingParams],
|
| 58 |
spk_ids: list[list[int]],
|
| 59 |
+
use_dialect_prompt: bool = False,
|
| 60 |
+
dialect_prompt_text_tokens_for_llm: list[list[int]] = None,
|
| 61 |
+
dialect_prefix: list[list[int]] = None,
|
| 62 |
**kwargs,
|
| 63 |
):
|
| 64 |
+
|
| 65 |
prompt_size, turn_size = len(prompt_mels_for_llm), len(text_tokens_for_llm)
|
| 66 |
|
| 67 |
|
|
|
|
| 93 |
prompt_inputs = []
|
| 94 |
history_inputs = []
|
| 95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
for i in range(prompt_size):
|
| 97 |
speech_tokens_i = [token+self.config.hf_config.speech_token_offset for token in prompt_speech_tokens[i].tolist()]
|
| 98 |
speech_tokens_i += [self.config.hf_config.eos_token_id]
|
| 99 |
+
if use_dialect_prompt and len(dialect_prompt_text_tokens_for_llm[i])>0:
|
| 100 |
+
dialect_prompt_input = prompt_text_tokens_for_llm[i] + speech_tokens_i + dialect_prompt_text_tokens_for_llm[i]
|
| 101 |
if i>0:
|
| 102 |
+
dialect_prompt_input = dialect_prefix[0] + dialect_prompt_input
|
| 103 |
+
prompt_input = self.llm.generate(dialect_prompt_input, sampling_params, past_key_values=None)['token_ids']
|
| 104 |
+
prompt_inputs.append(dialect_prefix[i+1]+dialect_prompt_text_tokens_for_llm[i] + prompt_input)
|
| 105 |
+
history_inputs.append(dialect_prefix[i+1]+dialect_prompt_text_tokens_for_llm[i] + prompt_input)
|
| 106 |
else:
|
| 107 |
prompt_inputs.append(prompt_text_tokens_for_llm[i] + speech_tokens_i )
|
| 108 |
history_inputs.append(prompt_text_tokens_for_llm[i] + speech_tokens_i )
|
|
|
|
| 145 |
flow_inputs_len = torch.tensor([len(prompt_speech_token) + len(generated_speech_tokens)])
|
| 146 |
|
| 147 |
|
|
|
|
| 148 |
start_idx = spk_ids[i]
|
| 149 |
prompt_mels = prompt_mels_for_flow[start_idx][None]
|
| 150 |
prompt_mels_lens = prompt_mels_lens_for_flow[start_idx][None]
|
|
|
|
| 160 |
|
| 161 |
|
| 162 |
mel = generated_mels[:, :, prompt_mels_lens[0].item():generated_mels_lens[0].item()]
|
| 163 |
+
wav, _ = self.hift(speech_feat=mel)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
generated_wavs.append(wav)
|
| 165 |
|
| 166 |
|
soulxpodcast/utils/__pycache__/__init__.cpython-311.pyc
CHANGED
|
Binary files a/soulxpodcast/utils/__pycache__/__init__.cpython-311.pyc and b/soulxpodcast/utils/__pycache__/__init__.cpython-311.pyc differ
|
|
|
soulxpodcast/utils/__pycache__/audio.cpython-311.pyc
CHANGED
|
Binary files a/soulxpodcast/utils/__pycache__/audio.cpython-311.pyc and b/soulxpodcast/utils/__pycache__/audio.cpython-311.pyc differ
|
|
|
soulxpodcast/utils/__pycache__/commons.cpython-311.pyc
CHANGED
|
Binary files a/soulxpodcast/utils/__pycache__/commons.cpython-311.pyc and b/soulxpodcast/utils/__pycache__/commons.cpython-311.pyc differ
|
|
|
soulxpodcast/utils/__pycache__/dataloader.cpython-311.pyc
CHANGED
|
Binary files a/soulxpodcast/utils/__pycache__/dataloader.cpython-311.pyc and b/soulxpodcast/utils/__pycache__/dataloader.cpython-311.pyc differ
|
|
|
soulxpodcast/utils/__pycache__/infer_utils.cpython-311.pyc
CHANGED
|
Binary files a/soulxpodcast/utils/__pycache__/infer_utils.cpython-311.pyc and b/soulxpodcast/utils/__pycache__/infer_utils.cpython-311.pyc differ
|
|
|
soulxpodcast/utils/__pycache__/parser.cpython-311.pyc
CHANGED
|
Binary files a/soulxpodcast/utils/__pycache__/parser.cpython-311.pyc and b/soulxpodcast/utils/__pycache__/parser.cpython-311.pyc differ
|
|
|
soulxpodcast/utils/__pycache__/text.cpython-311.pyc
CHANGED
|
Binary files a/soulxpodcast/utils/__pycache__/text.cpython-311.pyc and b/soulxpodcast/utils/__pycache__/text.cpython-311.pyc differ
|
|
|
soulxpodcast/utils/audio.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
-
import numpy as np
|
| 2 |
import torch
|
|
|
|
| 3 |
from librosa.filters import mel as librosa_mel_fn
|
| 4 |
from scipy.io.wavfile import read
|
| 5 |
|
|
@@ -75,3 +75,49 @@ def mel_spectrogram(y, n_fft=1920, num_mels=80, sampling_rate=24000, hop_size=48
|
|
| 75 |
spec = spectral_normalize_torch(spec)
|
| 76 |
|
| 77 |
return spec
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
+
import numpy as np
|
| 3 |
from librosa.filters import mel as librosa_mel_fn
|
| 4 |
from scipy.io.wavfile import read
|
| 5 |
|
|
|
|
| 75 |
spec = spectral_normalize_torch(spec)
|
| 76 |
|
| 77 |
return spec
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def audio_volume_normalize(audio: torch.Tensor, coeff=0.1):
|
| 81 |
+
"""
|
| 82 |
+
Normalize the volume of an audio signal.
|
| 83 |
+
|
| 84 |
+
Parameters:
|
| 85 |
+
audio (torch tensor): Input audio signal array.
|
| 86 |
+
coeff (float): Target coefficient for normalization, default is 0.1.
|
| 87 |
+
|
| 88 |
+
Returns:
|
| 89 |
+
torch tensor: The volume-normalized audio signal.
|
| 90 |
+
"""
|
| 91 |
+
|
| 92 |
+
device = audio.device
|
| 93 |
+
audio = audio.cpu().numpy()
|
| 94 |
+
temp = np.sort(np.abs(audio))
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
if temp[-1] < 0.1:
|
| 98 |
+
scaling_factor = max(
|
| 99 |
+
temp[-1], 1e-3
|
| 100 |
+
)
|
| 101 |
+
audio = audio / scaling_factor * 0.1
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
temp = temp[temp > 0.01]
|
| 105 |
+
L = temp.shape[0]
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
if L <= 10:
|
| 109 |
+
return audio
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
volume = np.mean(temp[int(0.9 * L) : int(0.99 * L)])
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
audio = audio * np.clip(coeff / volume, a_min=0.1, a_max=10)
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
max_value = np.max(np.abs(audio))
|
| 119 |
+
if max_value > 1:
|
| 120 |
+
audio = audio / max_value
|
| 121 |
+
|
| 122 |
+
audio = torch.from_numpy(audio).to(device)
|
| 123 |
+
return audio
|
soulxpodcast/utils/commons.py
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def set_all_random_seed(seed):
|
| 7 |
+
random.seed(seed)
|
| 8 |
+
np.random.seed(seed)
|
| 9 |
+
torch.manual_seed(seed)
|
| 10 |
+
torch.cuda.manual_seed_all(seed)
|
soulxpodcast/utils/dataloader.py
CHANGED
|
@@ -11,8 +11,8 @@ import torchaudio.compliance.kaldi as kaldi
|
|
| 11 |
|
| 12 |
import s3tokenizer
|
| 13 |
|
| 14 |
-
from soulxpodcast.utils.audio import mel_spectrogram
|
| 15 |
from soulxpodcast.utils.text import normalize_text
|
|
|
|
| 16 |
from soulxpodcast.config import Config, SamplingParams
|
| 17 |
|
| 18 |
|
|
@@ -29,13 +29,13 @@ class PodcastDataset(Dataset):
|
|
| 29 |
|
| 30 |
"""Example data_list:
|
| 31 |
```
|
| 32 |
-
{"key": "uttid_1", "prompt_text": ["prompt_text1", "prompt_text2"], "
|
| 33 |
"text": ["text1", "text2], "spk": [0, 1], "prompt_wav": ["/mnt/data/audio/00000000.wav", "/mnt/data/audio/00000001.wav"], "wav": "/mnt/data/audio_synthetic/uttid_1.wav"}
|
| 34 |
```
|
| 35 |
Note:
|
| 36 |
- `key` is the key of this sample.
|
| 37 |
- `prompt_text` is the text used for prompt.
|
| 38 |
-
- `
|
| 39 |
- `text` is the text used for generating real audio.
|
| 40 |
- `spk` is the target speaker id to synthesize, corresponds to the prompt order. Default SPEAKER_0.
|
| 41 |
- `prompt_wav` is the audio used for prompt.
|
|
@@ -82,16 +82,18 @@ class PodcastDataset(Dataset):
|
|
| 82 |
def __getitem__(self, idx):
|
| 83 |
data = self.datas[idx]
|
| 84 |
try:
|
| 85 |
-
prompt_text_ids_list,
|
| 86 |
[], [], [], [], [], []
|
| 87 |
)
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
for spk_idx, (prompt_text, prompt_wav) in enumerate(zip(data["prompt_text"], data["prompt_wav"])):
|
| 93 |
|
| 94 |
audio = s3tokenizer.load_audio(prompt_wav, sr=16000)
|
|
|
|
|
|
|
| 95 |
log_mel = s3tokenizer.log_mel_spectrogram(audio)
|
| 96 |
|
| 97 |
|
|
@@ -103,7 +105,9 @@ class PodcastDataset(Dataset):
|
|
| 103 |
|
| 104 |
|
| 105 |
audio, sample_rate = torchaudio.load(prompt_wav, backend='soundfile')
|
| 106 |
-
audio = audio
|
|
|
|
|
|
|
| 107 |
if sample_rate != 24000:
|
| 108 |
audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=24000)(audio)
|
| 109 |
mel = mel_spectrogram(audio).transpose(1, 2).squeeze(0)
|
|
@@ -118,15 +122,19 @@ class PodcastDataset(Dataset):
|
|
| 118 |
prompt_text = f"{TASK_PODCAST}{prompt_text}"
|
| 119 |
prompt_text_ids = self.text_tokenizer.encode(prompt_text)
|
| 120 |
prompt_text_ids_list.append(prompt_text_ids)
|
| 121 |
-
if
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
if spk_idx == 0:
|
| 127 |
-
|
| 128 |
else:
|
| 129 |
-
|
| 130 |
log_mel_list.append(log_mel)
|
| 131 |
spk_emb_list.append(spk_emb)
|
| 132 |
mel_list.append(mel); mel_len_list.append(mel_len)
|
|
@@ -134,11 +142,14 @@ class PodcastDataset(Dataset):
|
|
| 134 |
"prompt_text_tokens": prompt_text_ids_list,
|
| 135 |
"spk_emb": spk_emb_list, "mel": mel_list, "mel_len": mel_len_list, "log_mel": log_mel_list, "info": data,
|
| 136 |
}
|
| 137 |
-
if
|
|
|
|
|
|
|
|
|
|
| 138 |
item.update({
|
| 139 |
-
"
|
| 140 |
-
"
|
| 141 |
-
"
|
| 142 |
})
|
| 143 |
text_ids_list, spks_list = [], []
|
| 144 |
if "spk" not in data:
|
|
@@ -170,12 +181,12 @@ class PodcastInferHandler(PodcastDataset):
|
|
| 170 |
|
| 171 |
"""Example data_list:
|
| 172 |
```
|
| 173 |
-
{"key": "uttid_1", "prompt_text": ["prompt_text1", "prompt_text2"], "
|
| 174 |
```
|
| 175 |
Note:
|
| 176 |
- `key` is the key of this sample.
|
| 177 |
- `prompt_text` is the text used for prompt.
|
| 178 |
-
- `
|
| 179 |
- `text` is the text used for generating real audio.
|
| 180 |
- `spk` is the target speaker id to synthesize, corresponds to the prompt order. Default SPEAKER_0.
|
| 181 |
- `prompt_wav` is the audio used for prompt.
|
|
|
|
| 11 |
|
| 12 |
import s3tokenizer
|
| 13 |
|
|
|
|
| 14 |
from soulxpodcast.utils.text import normalize_text
|
| 15 |
+
from soulxpodcast.utils.audio import mel_spectrogram, audio_volume_normalize
|
| 16 |
from soulxpodcast.config import Config, SamplingParams
|
| 17 |
|
| 18 |
|
|
|
|
| 29 |
|
| 30 |
"""Example data_list:
|
| 31 |
```
|
| 32 |
+
{"key": "uttid_1", "prompt_text": ["prompt_text1", "prompt_text2"], "dialect_prompt_text": ["dialect_prompt_text1", "dialect_prompt_text2"],
|
| 33 |
"text": ["text1", "text2], "spk": [0, 1], "prompt_wav": ["/mnt/data/audio/00000000.wav", "/mnt/data/audio/00000001.wav"], "wav": "/mnt/data/audio_synthetic/uttid_1.wav"}
|
| 34 |
```
|
| 35 |
Note:
|
| 36 |
- `key` is the key of this sample.
|
| 37 |
- `prompt_text` is the text used for prompt.
|
| 38 |
+
- `dialect_prompt_text` is the reshot text used for prompt.
|
| 39 |
- `text` is the text used for generating real audio.
|
| 40 |
- `spk` is the target speaker id to synthesize, corresponds to the prompt order. Default SPEAKER_0.
|
| 41 |
- `prompt_wav` is the audio used for prompt.
|
|
|
|
| 82 |
def __getitem__(self, idx):
|
| 83 |
data = self.datas[idx]
|
| 84 |
try:
|
| 85 |
+
prompt_text_ids_list, dialect_prompt_text_ids_list, spk_emb_list, mel_list, mel_len_list, log_mel_list = (
|
| 86 |
[], [], [], [], [], []
|
| 87 |
)
|
| 88 |
|
| 89 |
+
use_dialect_prompt = "dialect_prompt_text" in data
|
| 90 |
+
dialect_prefix_list = []
|
| 91 |
+
dialect_prefix_list.append(self.text_tokenizer.encode(f"{TASK_PODCAST}"))
|
| 92 |
for spk_idx, (prompt_text, prompt_wav) in enumerate(zip(data["prompt_text"], data["prompt_wav"])):
|
| 93 |
|
| 94 |
audio = s3tokenizer.load_audio(prompt_wav, sr=16000)
|
| 95 |
+
audio = audio_volume_normalize(audio)
|
| 96 |
+
|
| 97 |
log_mel = s3tokenizer.log_mel_spectrogram(audio)
|
| 98 |
|
| 99 |
|
|
|
|
| 105 |
|
| 106 |
|
| 107 |
audio, sample_rate = torchaudio.load(prompt_wav, backend='soundfile')
|
| 108 |
+
audio = audio[0]
|
| 109 |
+
audio = audio_volume_normalize(audio).unsqueeze(0)
|
| 110 |
+
|
| 111 |
if sample_rate != 24000:
|
| 112 |
audio = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=24000)(audio)
|
| 113 |
mel = mel_spectrogram(audio).transpose(1, 2).squeeze(0)
|
|
|
|
| 122 |
prompt_text = f"{TASK_PODCAST}{prompt_text}"
|
| 123 |
prompt_text_ids = self.text_tokenizer.encode(prompt_text)
|
| 124 |
prompt_text_ids_list.append(prompt_text_ids)
|
| 125 |
+
if use_dialect_prompt:
|
| 126 |
+
|
| 127 |
+
dialect_prompt_text = normalize_text(data["dialect_prompt_text"][spk_idx])
|
| 128 |
+
dialect_prompt_text = f"{SPK_DICT[spk_idx]}{TEXT_START}{dialect_prompt_text}{TEXT_END}{AUDIO_START}"
|
| 129 |
+
dialect_prompt_text_ids = self.text_tokenizer.encode(dialect_prompt_text)
|
| 130 |
+
# import pdb; pdb.set_trace()
|
| 131 |
+
print(f"dialect_prompt_text_ids: {dialect_prompt_text_ids}")
|
| 132 |
+
print(f"dialect_prompt_text: {dialect_prompt_text}")
|
| 133 |
+
dialect_prompt_text_ids_list.append(dialect_prompt_text_ids)
|
| 134 |
if spk_idx == 0:
|
| 135 |
+
dialect_prefix_list.append(self.text_tokenizer.encode(f"{TASK_PODCAST}"))
|
| 136 |
else:
|
| 137 |
+
dialect_prefix_list.append([])
|
| 138 |
log_mel_list.append(log_mel)
|
| 139 |
spk_emb_list.append(spk_emb)
|
| 140 |
mel_list.append(mel); mel_len_list.append(mel_len)
|
|
|
|
| 142 |
"prompt_text_tokens": prompt_text_ids_list,
|
| 143 |
"spk_emb": spk_emb_list, "mel": mel_list, "mel_len": mel_len_list, "log_mel": log_mel_list, "info": data,
|
| 144 |
}
|
| 145 |
+
if use_dialect_prompt:
|
| 146 |
+
import pdb; pdb.set_trace()
|
| 147 |
+
print(f"dialect_prompt_text_ids: {dialect_prompt_text_ids}")
|
| 148 |
+
print(f"dialect_prompt_text: {dialect_prompt_text}")
|
| 149 |
item.update({
|
| 150 |
+
"use_dialect_prompt": True,
|
| 151 |
+
"dialect_prompt_text_tokens": dialect_prompt_text_ids_list,
|
| 152 |
+
"dialect_prefix": dialect_prefix_list,
|
| 153 |
})
|
| 154 |
text_ids_list, spks_list = [], []
|
| 155 |
if "spk" not in data:
|
|
|
|
| 181 |
|
| 182 |
"""Example data_list:
|
| 183 |
```
|
| 184 |
+
{"key": "uttid_1", "prompt_text": ["prompt_text1", "prompt_text2"], "dialect_prompt_text": ["dialect_prompt_text1", "dialect_prompt_text2"], "text": ["text1", "text2], "spk": [0, 1], "prompt_wav": ["/mnt/data/audio/00000000.wav", "/mnt/data/audio/00000001.wav"], "wav": "/mnt/data/audio_synthetic/uttid_1.wav"}
|
| 185 |
```
|
| 186 |
Note:
|
| 187 |
- `key` is the key of this sample.
|
| 188 |
- `prompt_text` is the text used for prompt.
|
| 189 |
+
- `dialect_prompt_text` is the cot text used for prompt as to activate specific ability.
|
| 190 |
- `text` is the text used for generating real audio.
|
| 191 |
- `spk` is the target speaker id to synthesize, corresponds to the prompt order. Default SPEAKER_0.
|
| 192 |
- `prompt_wav` is the audio used for prompt.
|
soulxpodcast/utils/infer_utils.py
ADDED
|
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import re
|
| 2 |
+
import json
|
| 3 |
+
import torch
|
| 4 |
+
import argparse
|
| 5 |
+
from tqdm import tqdm
|
| 6 |
+
from datetime import datetime
|
| 7 |
+
|
| 8 |
+
import s3tokenizer
|
| 9 |
+
|
| 10 |
+
from soulxpodcast.models.soulxpodcast import SoulXPodcast
|
| 11 |
+
from soulxpodcast.utils.dataloader import PodcastInferHandler
|
| 12 |
+
from soulxpodcast.utils.commons import set_all_random_seed
|
| 13 |
+
from soulxpodcast.config import Config, SoulXPodcastLLMConfig, SamplingParams
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def initiate_model(seed, model_path, llm_engine, fp16_flow):
|
| 17 |
+
set_all_random_seed(seed)
|
| 18 |
+
|
| 19 |
+
hf_config = SoulXPodcastLLMConfig.from_initial_and_json(
|
| 20 |
+
initial_values={"fp16_flow": fp16_flow},
|
| 21 |
+
json_file=f"{model_path}/soulxpodcast_config.json"
|
| 22 |
+
)
|
| 23 |
+
if llm_engine == "vllm":
|
| 24 |
+
import importlib.util
|
| 25 |
+
if not importlib.util.find_spec("vllm"):
|
| 26 |
+
llm_engine = "hf"
|
| 27 |
+
timestamp = datetime.now().strftime('%Y-%m-%d %H:%M:%S,%f')[:-3]
|
| 28 |
+
tqdm.write(f"[{timestamp}] - [WARNING]: No install VLLM, switch to hf engine.")
|
| 29 |
+
|
| 30 |
+
config = Config(model=model_path, enforce_eager=True, llm_engine=llm_engine, hf_config=hf_config)
|
| 31 |
+
model = SoulXPodcast(config)
|
| 32 |
+
|
| 33 |
+
dataset = PodcastInferHandler(model.llm.tokenizer, None, config)
|
| 34 |
+
|
| 35 |
+
return model, dataset
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def process_single_input(dataset, target_text_list, prompt_wav_list, prompt_text_list, use_dialect_prompt, dialect_prompt_text_list):
|
| 39 |
+
spks, texts = [], []
|
| 40 |
+
for target_text in target_text_list:
|
| 41 |
+
pattern = r'(\[S[1-9]\])(.+)'
|
| 42 |
+
match = re.match(pattern, target_text)
|
| 43 |
+
text, spk = match.group(2), int(match.group(1)[2])-1
|
| 44 |
+
spks.append(spk)
|
| 45 |
+
texts.append(text)
|
| 46 |
+
|
| 47 |
+
dataitem = {"key": "001", "prompt_text": prompt_text_list, "prompt_wav": prompt_wav_list,
|
| 48 |
+
"text": texts, "spk": spks, }
|
| 49 |
+
if use_dialect_prompt:
|
| 50 |
+
dataitem.update({
|
| 51 |
+
"dialect_prompt_text": dialect_prompt_text_list
|
| 52 |
+
})
|
| 53 |
+
dataset.update_datasource(
|
| 54 |
+
[
|
| 55 |
+
dataitem
|
| 56 |
+
]
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
data = dataset[0]
|
| 61 |
+
prompt_mels_for_llm, prompt_mels_lens_for_llm = s3tokenizer.padding(data["log_mel"])
|
| 62 |
+
spk_emb_for_flow = torch.tensor(data["spk_emb"])
|
| 63 |
+
prompt_mels_for_flow = torch.nn.utils.rnn.pad_sequence(data["mel"], batch_first=True, padding_value=0)
|
| 64 |
+
prompt_mels_lens_for_flow = torch.tensor(data['mel_len'])
|
| 65 |
+
text_tokens_for_llm = data["text_tokens"]
|
| 66 |
+
prompt_text_tokens_for_llm = data["prompt_text_tokens"]
|
| 67 |
+
spk_ids = data["spks_list"]
|
| 68 |
+
sampling_params = SamplingParams(use_ras=True,win_size=25,tau_r=0.2)
|
| 69 |
+
infos = [data["info"]]
|
| 70 |
+
processed_data = {
|
| 71 |
+
"prompt_mels_for_llm": prompt_mels_for_llm,
|
| 72 |
+
"prompt_mels_lens_for_llm": prompt_mels_lens_for_llm,
|
| 73 |
+
"prompt_text_tokens_for_llm": prompt_text_tokens_for_llm,
|
| 74 |
+
"text_tokens_for_llm": text_tokens_for_llm,
|
| 75 |
+
"prompt_mels_for_flow_ori": prompt_mels_for_flow,
|
| 76 |
+
"prompt_mels_lens_for_flow": prompt_mels_lens_for_flow,
|
| 77 |
+
"spk_emb_for_flow": spk_emb_for_flow,
|
| 78 |
+
"sampling_params": sampling_params,
|
| 79 |
+
"spk_ids": spk_ids,
|
| 80 |
+
"infos": infos,
|
| 81 |
+
"use_dialect_prompt": use_dialect_prompt,
|
| 82 |
+
}
|
| 83 |
+
if use_dialect_prompt:
|
| 84 |
+
processed_data.update({
|
| 85 |
+
"dialect_prompt_text_tokens_for_llm": data["dialect_prompt_text_tokens"],
|
| 86 |
+
"dialect_prefix": data["dialect_prefix"],
|
| 87 |
+
})
|
| 88 |
+
return processed_data
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def check_models(model_path, inputs):
|
| 92 |
+
if inputs['use_dialect_prompt']:
|
| 93 |
+
assert 'dialect' in model_path, "Dialect prompt is used, you should use a dialect model."
|
| 94 |
+
|
| 95 |
+
return True
|
soulxpodcast/utils/parser.py
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import datetime
|
| 3 |
+
import os
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def generate_time_index():
|
| 7 |
+
"""Generate a time-based unique key, e.g. '20251023-001'."""
|
| 8 |
+
now = datetime.datetime.now()
|
| 9 |
+
return now.strftime("%Y%m%d-%H%M%S")
|
| 10 |
+
|
| 11 |
+
def check_prefix(text):
|
| 12 |
+
prefixes = ["<|Henan|>", "<|Sichuan|>", "<|Yue|>"]
|
| 13 |
+
|
| 14 |
+
for prefix in prefixes:
|
| 15 |
+
if text.startswith(prefix):
|
| 16 |
+
return True
|
| 17 |
+
return False
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def podcast_format_parser(data, output_dir="outputs"):
|
| 21 |
+
"""
|
| 22 |
+
Parse the original multi-speaker podcast JSON to the target flattened format.
|
| 23 |
+
The key will be a time-based unique ID.
|
| 24 |
+
Args:
|
| 25 |
+
data (dict): input JSON data with 'speakers' and 'text' fields
|
| 26 |
+
output_dir (str): directory for output wav file path
|
| 27 |
+
Returns:
|
| 28 |
+
dict: converted format
|
| 29 |
+
"""
|
| 30 |
+
speakers = data.get("speakers", {})
|
| 31 |
+
text_entries = data.get("text", [])
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
spk2id = {name: idx for idx, name in enumerate(speakers.keys())}
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
prompt_text = []
|
| 38 |
+
prompt_wav = []
|
| 39 |
+
dialect_prompt_text = []
|
| 40 |
+
|
| 41 |
+
for name in speakers:
|
| 42 |
+
prompt_text.append(speakers[name].get("prompt_text", ""))
|
| 43 |
+
prompt_wav.append(speakers[name].get("prompt_audio", ""))
|
| 44 |
+
dialect_prompt_text.append(speakers[name].get("dialect_prompt", ""))
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
text_list = []
|
| 48 |
+
spk_list = []
|
| 49 |
+
for turn in text_entries:
|
| 50 |
+
if len(turn) == 2:
|
| 51 |
+
spk_name, utt_text = turn
|
| 52 |
+
text = f'[{spk_name}]{utt_text}'
|
| 53 |
+
text_list.append(text)
|
| 54 |
+
spk_list.append(spk2id.get(spk_name, -1))
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
key = generate_time_index()
|
| 58 |
+
wav_path = os.path.join(output_dir, f"{key}.wav")
|
| 59 |
+
|
| 60 |
+
use_dialect_prompt = False
|
| 61 |
+
for dialect_text in dialect_prompt_text:
|
| 62 |
+
if len(dialect_text) > 0:
|
| 63 |
+
assert check_prefix(dialect_text), f"Unknown dialect prefix: {dialect_text} \
|
| 64 |
+
\n Prefix should be one of: <|Henan|>, <|Sichuan|>, <|Yue|>"
|
| 65 |
+
use_dialect_prompt = True
|
| 66 |
+
|
| 67 |
+
result = {
|
| 68 |
+
"key": key,
|
| 69 |
+
"prompt_text": prompt_text,
|
| 70 |
+
"prompt_wav": prompt_wav,
|
| 71 |
+
"text": text_list,
|
| 72 |
+
"spk": spk_list,
|
| 73 |
+
"wav": wav_path,
|
| 74 |
+
"use_dialect_prompt": use_dialect_prompt,
|
| 75 |
+
"dialect_prompt_text": dialect_prompt_text
|
| 76 |
+
}
|
| 77 |
+
|
| 78 |
+
return result
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
if __name__ == "__main__":
|
| 83 |
+
with open("example/podcast_script/script_henan.json", "r", encoding="utf-8") as f:
|
| 84 |
+
data = json.load(f)
|
| 85 |
+
|
| 86 |
+
converted = podcast_format_parser(data)
|
| 87 |
+
print(json.dumps(converted, ensure_ascii=False, indent=2))
|
soulxpodcast/utils/text.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
import re
|
| 2 |
-
|
| 3 |
|
| 4 |
def remove_space_between_chinese(text):
|
| 5 |
|
|
@@ -41,3 +41,42 @@ def normalize_text(current_text):
|
|
| 41 |
current_text += "."
|
| 42 |
|
| 43 |
return current_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import re
|
| 2 |
+
from typing import List
|
| 3 |
|
| 4 |
def remove_space_between_chinese(text):
|
| 5 |
|
|
|
|
| 41 |
current_text += "."
|
| 42 |
|
| 43 |
return current_text
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def check_monologue_text(text: str, prefix: str = None) -> bool:
|
| 47 |
+
text = text.strip()
|
| 48 |
+
|
| 49 |
+
if prefix is not None and (not text.startswith(prefix)):
|
| 50 |
+
return False
|
| 51 |
+
|
| 52 |
+
if prefix is not None:
|
| 53 |
+
text = text.removeprefix(prefix)
|
| 54 |
+
text = text.strip()
|
| 55 |
+
|
| 56 |
+
if len(text) == 0:
|
| 57 |
+
return False
|
| 58 |
+
return True
|
| 59 |
+
|
| 60 |
+
def check_dialect_prompt_text(text: str, prefix: str = None) -> bool:
|
| 61 |
+
text = text.strip()
|
| 62 |
+
|
| 63 |
+
if prefix is not None and (not text.startswith(prefix)):
|
| 64 |
+
return False
|
| 65 |
+
text = text.strip()
|
| 66 |
+
|
| 67 |
+
if len(text) == 0:
|
| 68 |
+
return False
|
| 69 |
+
return True
|
| 70 |
+
|
| 71 |
+
def check_dialogue_text(text_list: List[str]) -> bool:
|
| 72 |
+
if len(text_list) == 0:
|
| 73 |
+
return False
|
| 74 |
+
for text in text_list:
|
| 75 |
+
if not (
|
| 76 |
+
check_monologue_text(text, "[S1]")
|
| 77 |
+
or check_monologue_text(text, "[S2]")
|
| 78 |
+
or check_monologue_text(text, "[S3]")
|
| 79 |
+
or check_monologue_text(text, "[S4]")
|
| 80 |
+
):
|
| 81 |
+
return False
|
| 82 |
+
return True
|