Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
app_code = """\
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
6 |
+
|
7 |
+
# Load the fine-tuned SBERT model from Hugging Face
|
8 |
+
model_name = "Steph974/SBERT-FineTuned-Classifier" # Your uploaded model
|
9 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
+
|
12 |
+
# Ensure the model is on the correct device
|
13 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
14 |
+
model.to(device)
|
15 |
+
model.eval()
|
16 |
+
|
17 |
+
def predict_similarity(sentence1, sentence2):
|
18 |
+
\"\"\"
|
19 |
+
Predicts the probability of two sentences belonging to the same class (1) or different (0).
|
20 |
+
Returns probability instead of class label.
|
21 |
+
\"\"\"
|
22 |
+
# Tokenize input
|
23 |
+
inputs = tokenizer(sentence1, sentence2, return_tensors="pt", truncation=True, padding="max_length", max_length=512)
|
24 |
+
inputs = {key: value.to(device) for key, value in inputs.items()} # Move tensors to model device
|
25 |
+
|
26 |
+
# Perform inference
|
27 |
+
with torch.no_grad():
|
28 |
+
outputs = model(**inputs)
|
29 |
+
|
30 |
+
# Get probabilities
|
31 |
+
probabilities = F.softmax(outputs.logits, dim=1).cpu().numpy()[0]
|
32 |
+
proba_same = probabilities[1] # Probability that sentences are in the same class
|
33 |
+
proba_diff = probabilities[0] # Probability that sentences are different
|
34 |
+
|
35 |
+
return {
|
36 |
+
"Same Class Probability": round(proba_same * 100, 2),
|
37 |
+
"Different Class Probability": round(proba_diff * 100, 2)
|
38 |
+
}
|
39 |
+
|
40 |
+
# Gradio UI
|
41 |
+
interface = gr.Interface(
|
42 |
+
fn=predict_similarity,
|
43 |
+
inputs=[
|
44 |
+
gr.Textbox(label="Sentence 1", placeholder="Enter the first sentence..."),
|
45 |
+
gr.Textbox(label="Sentence 2", placeholder="Enter the second sentence...")
|
46 |
+
],
|
47 |
+
outputs=gr.Label(label="Prediction Probabilities"),
|
48 |
+
title="SBERT Sentence-Pair Similarity",
|
49 |
+
description="Enter two sentences and see how similar they are according to the fine-tuned SBERT model.",
|
50 |
+
theme="huggingface",
|
51 |
+
)
|
52 |
+
|
53 |
+
# Launch the Gradio app
|
54 |
+
interface.launch()
|
55 |
+
"""
|
56 |
+
|
57 |
+
# Save to app.py
|
58 |
+
with open("app.py", "w") as f:
|
59 |
+
f.write(app_code)
|