File size: 18,820 Bytes
9ed8839
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
import argparse
import os
import random
from pathlib import Path
from typing import Union
#CHANGED VERSION
import lightning as pl
import numpy as np
import torch
import torch.nn.functional as F
from lightning import Trainer
from lightning.fabric.utilities import rank_zero_only
from lightning.pytorch.callbacks import ModelCheckpoint
from peft import LoraConfig, TaskType
from safetensors.torch import save_file as safe_save_file
from torch import optim
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import Dataset, DataLoader

import MIDI
from midi_model import MIDIModel, MIDIModelConfig, config_name_list
from midi_tokenizer import MIDITokenizerV1, MIDITokenizerV2

EXTENSION = [".mid", ".midi"]


def file_ext(fname):
    return os.path.splitext(fname)[1].lower()


class MidiDataset(Dataset):
    def __init__(self, midi_list, tokenizer: Union[MIDITokenizerV1, MIDITokenizerV2], max_len=2048, min_file_size=1,
                 max_file_size=384000,
                 aug=True, check_quality=False, rand_start=True):

        self.tokenizer = tokenizer
        self.midi_list = midi_list
        self.max_len = max_len
        self.min_file_size = min_file_size
        self.max_file_size = max_file_size
        self.aug = aug
        self.check_quality = check_quality
        self.rand_start = rand_start

    def __len__(self):
        return len(self.midi_list)

    def load_midi(self, index):
        path = self.midi_list[index]
        try:
            with open(path, 'rb') as f:
                datas = f.read()
            if len(datas) > self.max_file_size:  # large midi file will spend too much time to load
                raise ValueError("file too large")
            elif len(datas) < self.min_file_size:
                raise ValueError("file too small")
            mid = MIDI.midi2score(datas)
            if max([0] + [len(track) for track in mid[1:]]) == 0:
                raise ValueError("empty track")
            mid = self.tokenizer.tokenize(mid)
            if self.check_quality and not self.tokenizer.check_quality(mid)[0]:
                raise ValueError("bad quality")
            if self.aug:
                mid = self.tokenizer.augment(mid)
        except Exception:
            mid = self.load_midi(random.randint(0, self.__len__() - 1))
        return mid

    def __getitem__(self, index):
        mid = self.load_midi(index)
        mid = np.asarray(mid, dtype=np.int16)
        # if mid.shape[0] < self.max_len:
        #     mid = np.pad(mid, ((0, self.max_len - mid.shape[0]), (0, 0)),
        #                  mode="constant", constant_values=self.tokenizer.pad_id)
        if self.rand_start:
            start_idx = random.randrange(0, max(1, mid.shape[0] - self.max_len))
            start_idx = random.choice([0, start_idx])
        else:
            max_start = max(1, mid.shape[0] - self.max_len)
            start_idx = (index * (max_start // 8)) % max_start
        mid = mid[start_idx: start_idx + self.max_len]
        mid = mid.astype(np.int64)
        mid = torch.from_numpy(mid)
        return mid

    def collate_fn(self, batch):
        max_len = max([len(mid) for mid in batch])
        batch = [F.pad(mid, (0, 0, 0, max_len - mid.shape[0]), mode="constant", value=self.tokenizer.pad_id) for mid in batch]
        batch = torch.stack(batch)
        return batch


def get_linear_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, last_epoch=-1):
    """ Create a schedule with a learning rate that decreases linearly after
    linearly increasing during a warmup period.
    """

    def lr_lambda(current_step):
        if current_step < num_warmup_steps:
            return float(current_step) / float(max(1, num_warmup_steps))
        return max(0.0, float(num_training_steps - current_step) / float(max(1, num_training_steps - num_warmup_steps)))

    return LambdaLR(optimizer, lr_lambda, last_epoch)


class TrainMIDIModel(MIDIModel, pl.LightningModule):
    def __init__(self, config: MIDIModelConfig,
                 lr=2e-4, weight_decay=0.01, warmup=1e3, max_step=1e6, sample_seq=False,
                 gen_example_interval=1, example_batch=8):
        super(TrainMIDIModel, self).__init__(config)
        self.lr = lr
        self.weight_decay = weight_decay
        self.warmup = warmup
        self.max_step = max_step
        self.sample_seq = sample_seq
        self.gen_example_interval = gen_example_interval
        self.example_batch = example_batch
        self.last_save_step = 0
        self.gen_example_count = 0

    def configure_optimizers(self):
        param_optimizer = list(self.named_parameters())
        no_decay = ['bias', 'norm']  # no decay for bias and Norm
        optimizer_grouped_parameters = [
            {
                'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
                'weight_decay': self.weight_decay},
            {
                'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
                'weight_decay': 0.0
            }
        ]
        optimizer = optim.AdamW(
            optimizer_grouped_parameters,
            lr=self.lr,
            betas=(0.9, 0.99),
            eps=1e-08,
        )
        lr_scheduler = get_linear_schedule_with_warmup(
            optimizer=optimizer,
            num_warmup_steps=self.warmup,
            num_training_steps=self.max_step,
        )
        return {
            "optimizer": optimizer,
            "lr_scheduler": {
                "scheduler": lr_scheduler,
                "interval": "step",
                "frequency": 1
            }
        }

    def compute_accuracy(self, logits, labels):
        out = torch.argmax(logits, dim=-1)
        out = out.flatten()
        labels = labels.flatten()

        mask = (labels != self.tokenizer.pad_id)
        out = out[mask]
        labels = labels[mask]

        num_right = (out == labels)
        num_right = torch.sum(num_right).type(torch.float32)
        acc = num_right / len(labels)

        return acc

    def training_step(self, batch, batch_idx):
        x = batch[:, :-1].contiguous()  # (batch_size, midi_sequence_length, token_sequence_length)
        y = batch[:, 1:].contiguous()
        hidden = self.forward(x)
        if self.sample_seq:  # to reduce vram
            rand_idx = [-1] + random.sample(list(range(y.shape[1] - 2)), min(127, (y.shape[1] - 2) // 2))
            hidden = hidden[:, rand_idx]
            y = y[:, rand_idx]
        hidden = hidden.reshape(-1, hidden.shape[-1])
        y = y.reshape(-1, y.shape[-1])  # (batch_size*midi_sequence_length, token_sequence_length)
        x = y[:, :-1]
        logits = self.forward_token(hidden, x)
        loss = F.cross_entropy(
            logits.view(-1, self.tokenizer.vocab_size),
            y.view(-1),
            reduction="mean",
            ignore_index=self.tokenizer.pad_id
        )
        self.log("train/loss", loss)
        self.log("train/lr", self.lr_schedulers().get_last_lr()[0])
        return loss

    def validation_step(self, batch, batch_idx):
        x = batch[:, :-1].contiguous()  # (batch_size, midi_sequence_length, token_sequence_length)
        y = batch[:, 1:].contiguous()
        hidden = self.forward(x)
        hidden = hidden.reshape(-1, hidden.shape[-1])
        y = y.reshape(-1, y.shape[-1])  # (batch_size*midi_sequence_length, token_sequence_length)
        x = y[:, :-1]
        logits = self.forward_token(hidden, x)
        loss = F.cross_entropy(
            logits.view(-1, self.tokenizer.vocab_size),
            y.view(-1),
            reduction="mean",
            ignore_index=self.tokenizer.pad_id
        )
        acc = self.compute_accuracy(logits, y)
        self.log_dict({"val/loss": loss, "val/acc": acc}, sync_dist=True)
        return loss

    @rank_zero_only
    def gen_example(self, save_dir):
        base_dir = f"{save_dir}/sample/{self.global_step}"
        if not os.path.exists(base_dir):
            Path(base_dir).mkdir(parents=True)
        midis = self.generate(batch_size=self.example_batch)
        midis = [self.tokenizer.detokenize(midi) for midi in midis]
        imgs = [self.tokenizer.midi2img(midi) for midi in midis]
        for i, (img, midi) in enumerate(zip(imgs, midis)):
            img.save(f"{base_dir}/0_{i}.png")
            with open(f"{base_dir}/0_{i}.mid", 'wb') as f:
                f.write(MIDI.score2midi(midi))
        prompt = val_dataset.load_midi(random.randint(0, len(val_dataset) - 1))
        prompt = np.asarray(prompt, dtype=np.int16)
        ori = prompt[:512]
        img = self.tokenizer.midi2img(self.tokenizer.detokenize(ori))
        img.save(f"{base_dir}/1_ori.png")
        prompt = prompt[:256].astype(np.int64)
        midis = self.generate(prompt, batch_size=self.example_batch)
        midis = [self.tokenizer.detokenize(midi) for midi in midis]
        imgs = [self.tokenizer.midi2img(midi) for midi in midis]
        for i, (img, midi) in enumerate(zip(imgs, midis)):
            img.save(f"{base_dir}/1_{i}.png")
            with open(f"{base_dir}/1_{i}.mid", 'wb') as f:
                f.write(MIDI.score2midi(midi))

    @rank_zero_only
    def save_peft(self, save_dir):
        adapter_name = self.active_adapters()[0]
        adapter_config = self.peft_config[adapter_name]
        if not os.path.exists(save_dir):
            os.makedirs(save_dir, exist_ok=True)
        adapter_config.save_pretrained(save_dir)
        adapter_state_dict = self.get_adapter_state_dict(adapter_name)
        safe_save_file(adapter_state_dict,
                       os.path.join(save_dir, "adapter_model.safetensors"),
                       metadata={"format": "pt"})

    def on_save_checkpoint(self, checkpoint):
        if self.global_step == self.last_save_step:
            return
        self.last_save_step = self.global_step
        trainer = self.trainer
        if len(trainer.loggers) > 0:
            if trainer.loggers[0].save_dir is not None:
                save_dir = trainer.loggers[0].save_dir
            else:
                save_dir = trainer.default_root_dir
            name = trainer.loggers[0].name
            version = trainer.loggers[0].version
            version = version if isinstance(version, str) else f"version_{version}"
            save_dir = os.path.join(save_dir, str(name), version)
        else:
            save_dir = trainer.default_root_dir
        self.config.save_pretrained(os.path.join(save_dir, "checkpoints"))
        if self._hf_peft_config_loaded:
            self.save_peft(os.path.join(save_dir, "lora"))
        self.gen_example_count += 1
        if self.gen_example_interval>0 and self.gen_example_count % self.gen_example_interval == 0:
            try:
                self.gen_example(save_dir)
            except Exception as e:
                print(e)


def get_midi_list(path):
    all_files = {
        os.path.join(root, fname)
        for root, _dirs, files in os.walk(path)
        for fname in files
    }
    print(f"All files found: {all_files}")  # Debug: Print all files found
    all_midis = sorted(
        fname for fname in all_files if file_ext(fname) in EXTENSION
    )
    print(f"MIDI files after filtering: {all_midis}")  # Debug: Print MIDI files
    return all_midis


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    # model args
    parser.add_argument(
        "--resume", type=str, default="", help="resume training from ckpt"
    )
    parser.add_argument(
        "--ckpt", type=str, default="", help="load ckpt"
    )
    parser.add_argument(
        "--config", type=str, default="tv2o-medium", help="model config name or file"
    )
    parser.add_argument(
        "--task", type=str, default="train", choices=["train", "lora"], help="Full train or lora"
    )

    # dataset args
    parser.add_argument(
        "--data", type=str, default="data", help="dataset path"
    )
    parser.add_argument(
        "--data-val-split",
        type=int,
        default=128,
        help="the number of midi files divided into the validation set",
    )
    parser.add_argument("--max-len", type=int, default=512, help="max seq length for training")

    parser.add_argument(
        "--quality", action="store_true", default=False, help="check dataset quality"
    )

    # training args
    parser.add_argument("--seed", type=int, default=0, help="seed")
    parser.add_argument("--lr", type=float, default=1e-4, help="learning rate")
    parser.add_argument("--weight-decay", type=float, default=0.01, help="weight decay")
    parser.add_argument("--warmup-step", type=int, default=1e2, help="warmup step")
    parser.add_argument("--max-step", type=int, default=1e4, help="max training step")

    parser.add_argument("--grad-clip", type=float, default=1.0, help="gradient clip val")
    parser.add_argument(
        "--sample-seq", action="store_true", default=False, help="sample midi seq to reduce vram"
    )
    parser.add_argument(
        "--gen-example-interval", type=int, default=1, help="generate example interval. set 0 to disable"
    )
    parser.add_argument("--batch-size-train", type=int, default=1, help="batch size for training")
    
    parser.add_argument("--batch-size-val", type=int, default=1, help="batch size for validation")

    parser.add_argument(
        "--batch-size-gen-example", type=int, default=8, help="batch size for generate example"
    )
    parser.add_argument("--workers-train", type=int, default=1, help="workers num for training dataloader")
    
    parser.add_argument("--workers-val", type=int, default=1, help="workers num for validation dataloader")

    parser.add_argument("--acc-grad", type=int, default=4, help="gradient accumulation")

    parser.add_argument(
        "--accelerator",
        type=str,
        default="mps",
        choices=["cpu", "gpu", "tpu", "ipu", "hpu", "auto", "mps"],
        help="accelerator",
    )
    parser.add_argument("--precision", type=str, default="16-mixed", help="precision")

    parser.add_argument("--devices", type=int, default=1, help="devices num")
    parser.add_argument("--nodes", type=int, default=1, help="nodes num")
    parser.add_argument(
        "--disable-benchmark", action="store_true", default=False, help="disable cudnn benchmark"
    )
    parser.add_argument(
        "--log-step", type=int, default=1, help="log training loss every n steps"
    )
    parser.add_argument("--val-step", type=int, default=10000, help="validate and save every n steps")


    opt = parser.parse_args()
    print(opt)
    opt.data = "/Users/ethanlum/Desktop/midi-composer/data"
    print(f"Dataset directory: {opt.data}")

    if not os.path.exists("lightning_logs"):
        os.mkdir("lightning_logs")
    if not os.path.exists("sample"):
        os.mkdir("sample")
    pl.seed_everything(opt.seed)
    print("---load dataset---")
    if opt.config in config_name_list:
        config = MIDIModelConfig.from_name(opt.config)
    else:
        config = MIDIModelConfig.from_name("tv2o-small")
    tokenizer = config.tokenizer
    midi_list = get_midi_list(opt.data)
    print(f"Number of MIDI files found: {len(midi_list)}")
    import os
    print(f"Files in dataset directory: {os.listdir(opt.data)}")
    random.shuffle(midi_list)
    full_dataset_len = len(midi_list)
    train_dataset_len = full_dataset_len - opt.data_val_split
    train_midi_list = midi_list[:train_dataset_len]
    val_midi_list = midi_list[train_dataset_len:]
    train_dataset = MidiDataset(train_midi_list, tokenizer, max_len=opt.max_len, aug=False, check_quality=opt.quality,
                                rand_start=True)
    val_dataset = MidiDataset(val_midi_list, tokenizer, max_len=opt.max_len, aug=False, check_quality=opt.quality,
                              rand_start=False)
    train_dataloader = DataLoader(
        train_dataset,
        batch_size=opt.batch_size_train,
        #batch_size = 8,
        shuffle=True,
        persistent_workers=True,
        num_workers=opt.workers_train,
        pin_memory=True,
        collate_fn=train_dataset.collate_fn
    )
    val_dataloader = DataLoader(
        val_dataset,
        batch_size=opt.batch_size_val,
        shuffle=False,
        persistent_workers=True,
        num_workers=opt.workers_val,
        pin_memory=True,
        collate_fn=val_dataset.collate_fn
    )
    print(f"train: {len(train_dataset)}  val: {len(val_dataset)}")
    torch.backends.cuda.enable_mem_efficient_sdp(True)
    torch.backends.cuda.enable_flash_sdp(True)
    model = TrainMIDIModel(config, lr=opt.lr, weight_decay=opt.weight_decay,
                           warmup=opt.warmup_step, max_step=opt.max_step,
                           sample_seq=opt.sample_seq, gen_example_interval=opt.gen_example_interval,
                           example_batch=opt.batch_size_gen_example)
    if opt.ckpt:
        ckpt = torch.load(opt.ckpt, map_location="cpu")
        state_dict = ckpt.get("state_dict", ckpt)
        model.load_state_dict(state_dict, strict=False)
    elif opt.task == "lora":
        raise ValueError("--ckpt must be set to train lora")
    if opt.task == "lora":
        model.requires_grad_(False)
        lora_config = LoraConfig(
            r=64,
            target_modules=["q_proj", "o_proj", "k_proj", "v_proj", "gate_proj", "up_proj", "down_proj"],
            task_type=TaskType.CAUSAL_LM,
            bias="none",
            lora_alpha=128,
            lora_dropout=0
        )
        model.add_adapter(lora_config)
    print("---start train---")
    checkpoint_callback = ModelCheckpoint(
        monitor="val/loss",
        mode="min",
        save_top_k=1,
        save_last=True,
        auto_insert_metric_name=False,
        filename="epoch={epoch},loss={val/loss:.4f}",
    )
    callbacks = [checkpoint_callback]

    trainer = Trainer(
    val_check_interval=300,  # Validate less frequently
    check_val_every_n_epoch=2,  # Validate every 2 epochs
    max_epochs=10,
    precision=16,  # Use 16-bit precision to reduce memory
    accumulate_grad_batches=1,  # Minimal gradient accumulation
    gradient_clip_val=opt.grad_clip,  # Retain gradient clipping
    accelerator="mps",  # Ensure MPS accelerator is used
    devices=1,  # Use only one device to avoid memory overrun
    enable_checkpointing=True,  # Keep checkpoints enabled
    num_sanity_val_steps=0,  # Skip sanity validation for speed
    num_nodes=opt.nodes,
    max_steps=opt.max_step // 2,  # Halve total steps for faster training
    benchmark=not opt.disable_benchmark,
    log_every_n_steps=10,
    strategy="auto",
    callbacks=callbacks,
)
    ckpt_path = opt.resume
    if ckpt_path == "":
        ckpt_path = None
    print("---start train---")
    trainer.fit(model, train_dataloader, val_dataloader, ckpt_path=ckpt_path)