File size: 18,820 Bytes
9ed8839 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 |
import argparse
import os
import random
from pathlib import Path
from typing import Union
#CHANGED VERSION
import lightning as pl
import numpy as np
import torch
import torch.nn.functional as F
from lightning import Trainer
from lightning.fabric.utilities import rank_zero_only
from lightning.pytorch.callbacks import ModelCheckpoint
from peft import LoraConfig, TaskType
from safetensors.torch import save_file as safe_save_file
from torch import optim
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import Dataset, DataLoader
import MIDI
from midi_model import MIDIModel, MIDIModelConfig, config_name_list
from midi_tokenizer import MIDITokenizerV1, MIDITokenizerV2
EXTENSION = [".mid", ".midi"]
def file_ext(fname):
return os.path.splitext(fname)[1].lower()
class MidiDataset(Dataset):
def __init__(self, midi_list, tokenizer: Union[MIDITokenizerV1, MIDITokenizerV2], max_len=2048, min_file_size=1,
max_file_size=384000,
aug=True, check_quality=False, rand_start=True):
self.tokenizer = tokenizer
self.midi_list = midi_list
self.max_len = max_len
self.min_file_size = min_file_size
self.max_file_size = max_file_size
self.aug = aug
self.check_quality = check_quality
self.rand_start = rand_start
def __len__(self):
return len(self.midi_list)
def load_midi(self, index):
path = self.midi_list[index]
try:
with open(path, 'rb') as f:
datas = f.read()
if len(datas) > self.max_file_size: # large midi file will spend too much time to load
raise ValueError("file too large")
elif len(datas) < self.min_file_size:
raise ValueError("file too small")
mid = MIDI.midi2score(datas)
if max([0] + [len(track) for track in mid[1:]]) == 0:
raise ValueError("empty track")
mid = self.tokenizer.tokenize(mid)
if self.check_quality and not self.tokenizer.check_quality(mid)[0]:
raise ValueError("bad quality")
if self.aug:
mid = self.tokenizer.augment(mid)
except Exception:
mid = self.load_midi(random.randint(0, self.__len__() - 1))
return mid
def __getitem__(self, index):
mid = self.load_midi(index)
mid = np.asarray(mid, dtype=np.int16)
# if mid.shape[0] < self.max_len:
# mid = np.pad(mid, ((0, self.max_len - mid.shape[0]), (0, 0)),
# mode="constant", constant_values=self.tokenizer.pad_id)
if self.rand_start:
start_idx = random.randrange(0, max(1, mid.shape[0] - self.max_len))
start_idx = random.choice([0, start_idx])
else:
max_start = max(1, mid.shape[0] - self.max_len)
start_idx = (index * (max_start // 8)) % max_start
mid = mid[start_idx: start_idx + self.max_len]
mid = mid.astype(np.int64)
mid = torch.from_numpy(mid)
return mid
def collate_fn(self, batch):
max_len = max([len(mid) for mid in batch])
batch = [F.pad(mid, (0, 0, 0, max_len - mid.shape[0]), mode="constant", value=self.tokenizer.pad_id) for mid in batch]
batch = torch.stack(batch)
return batch
def get_linear_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, last_epoch=-1):
""" Create a schedule with a learning rate that decreases linearly after
linearly increasing during a warmup period.
"""
def lr_lambda(current_step):
if current_step < num_warmup_steps:
return float(current_step) / float(max(1, num_warmup_steps))
return max(0.0, float(num_training_steps - current_step) / float(max(1, num_training_steps - num_warmup_steps)))
return LambdaLR(optimizer, lr_lambda, last_epoch)
class TrainMIDIModel(MIDIModel, pl.LightningModule):
def __init__(self, config: MIDIModelConfig,
lr=2e-4, weight_decay=0.01, warmup=1e3, max_step=1e6, sample_seq=False,
gen_example_interval=1, example_batch=8):
super(TrainMIDIModel, self).__init__(config)
self.lr = lr
self.weight_decay = weight_decay
self.warmup = warmup
self.max_step = max_step
self.sample_seq = sample_seq
self.gen_example_interval = gen_example_interval
self.example_batch = example_batch
self.last_save_step = 0
self.gen_example_count = 0
def configure_optimizers(self):
param_optimizer = list(self.named_parameters())
no_decay = ['bias', 'norm'] # no decay for bias and Norm
optimizer_grouped_parameters = [
{
'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)],
'weight_decay': self.weight_decay},
{
'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)],
'weight_decay': 0.0
}
]
optimizer = optim.AdamW(
optimizer_grouped_parameters,
lr=self.lr,
betas=(0.9, 0.99),
eps=1e-08,
)
lr_scheduler = get_linear_schedule_with_warmup(
optimizer=optimizer,
num_warmup_steps=self.warmup,
num_training_steps=self.max_step,
)
return {
"optimizer": optimizer,
"lr_scheduler": {
"scheduler": lr_scheduler,
"interval": "step",
"frequency": 1
}
}
def compute_accuracy(self, logits, labels):
out = torch.argmax(logits, dim=-1)
out = out.flatten()
labels = labels.flatten()
mask = (labels != self.tokenizer.pad_id)
out = out[mask]
labels = labels[mask]
num_right = (out == labels)
num_right = torch.sum(num_right).type(torch.float32)
acc = num_right / len(labels)
return acc
def training_step(self, batch, batch_idx):
x = batch[:, :-1].contiguous() # (batch_size, midi_sequence_length, token_sequence_length)
y = batch[:, 1:].contiguous()
hidden = self.forward(x)
if self.sample_seq: # to reduce vram
rand_idx = [-1] + random.sample(list(range(y.shape[1] - 2)), min(127, (y.shape[1] - 2) // 2))
hidden = hidden[:, rand_idx]
y = y[:, rand_idx]
hidden = hidden.reshape(-1, hidden.shape[-1])
y = y.reshape(-1, y.shape[-1]) # (batch_size*midi_sequence_length, token_sequence_length)
x = y[:, :-1]
logits = self.forward_token(hidden, x)
loss = F.cross_entropy(
logits.view(-1, self.tokenizer.vocab_size),
y.view(-1),
reduction="mean",
ignore_index=self.tokenizer.pad_id
)
self.log("train/loss", loss)
self.log("train/lr", self.lr_schedulers().get_last_lr()[0])
return loss
def validation_step(self, batch, batch_idx):
x = batch[:, :-1].contiguous() # (batch_size, midi_sequence_length, token_sequence_length)
y = batch[:, 1:].contiguous()
hidden = self.forward(x)
hidden = hidden.reshape(-1, hidden.shape[-1])
y = y.reshape(-1, y.shape[-1]) # (batch_size*midi_sequence_length, token_sequence_length)
x = y[:, :-1]
logits = self.forward_token(hidden, x)
loss = F.cross_entropy(
logits.view(-1, self.tokenizer.vocab_size),
y.view(-1),
reduction="mean",
ignore_index=self.tokenizer.pad_id
)
acc = self.compute_accuracy(logits, y)
self.log_dict({"val/loss": loss, "val/acc": acc}, sync_dist=True)
return loss
@rank_zero_only
def gen_example(self, save_dir):
base_dir = f"{save_dir}/sample/{self.global_step}"
if not os.path.exists(base_dir):
Path(base_dir).mkdir(parents=True)
midis = self.generate(batch_size=self.example_batch)
midis = [self.tokenizer.detokenize(midi) for midi in midis]
imgs = [self.tokenizer.midi2img(midi) for midi in midis]
for i, (img, midi) in enumerate(zip(imgs, midis)):
img.save(f"{base_dir}/0_{i}.png")
with open(f"{base_dir}/0_{i}.mid", 'wb') as f:
f.write(MIDI.score2midi(midi))
prompt = val_dataset.load_midi(random.randint(0, len(val_dataset) - 1))
prompt = np.asarray(prompt, dtype=np.int16)
ori = prompt[:512]
img = self.tokenizer.midi2img(self.tokenizer.detokenize(ori))
img.save(f"{base_dir}/1_ori.png")
prompt = prompt[:256].astype(np.int64)
midis = self.generate(prompt, batch_size=self.example_batch)
midis = [self.tokenizer.detokenize(midi) for midi in midis]
imgs = [self.tokenizer.midi2img(midi) for midi in midis]
for i, (img, midi) in enumerate(zip(imgs, midis)):
img.save(f"{base_dir}/1_{i}.png")
with open(f"{base_dir}/1_{i}.mid", 'wb') as f:
f.write(MIDI.score2midi(midi))
@rank_zero_only
def save_peft(self, save_dir):
adapter_name = self.active_adapters()[0]
adapter_config = self.peft_config[adapter_name]
if not os.path.exists(save_dir):
os.makedirs(save_dir, exist_ok=True)
adapter_config.save_pretrained(save_dir)
adapter_state_dict = self.get_adapter_state_dict(adapter_name)
safe_save_file(adapter_state_dict,
os.path.join(save_dir, "adapter_model.safetensors"),
metadata={"format": "pt"})
def on_save_checkpoint(self, checkpoint):
if self.global_step == self.last_save_step:
return
self.last_save_step = self.global_step
trainer = self.trainer
if len(trainer.loggers) > 0:
if trainer.loggers[0].save_dir is not None:
save_dir = trainer.loggers[0].save_dir
else:
save_dir = trainer.default_root_dir
name = trainer.loggers[0].name
version = trainer.loggers[0].version
version = version if isinstance(version, str) else f"version_{version}"
save_dir = os.path.join(save_dir, str(name), version)
else:
save_dir = trainer.default_root_dir
self.config.save_pretrained(os.path.join(save_dir, "checkpoints"))
if self._hf_peft_config_loaded:
self.save_peft(os.path.join(save_dir, "lora"))
self.gen_example_count += 1
if self.gen_example_interval>0 and self.gen_example_count % self.gen_example_interval == 0:
try:
self.gen_example(save_dir)
except Exception as e:
print(e)
def get_midi_list(path):
all_files = {
os.path.join(root, fname)
for root, _dirs, files in os.walk(path)
for fname in files
}
print(f"All files found: {all_files}") # Debug: Print all files found
all_midis = sorted(
fname for fname in all_files if file_ext(fname) in EXTENSION
)
print(f"MIDI files after filtering: {all_midis}") # Debug: Print MIDI files
return all_midis
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# model args
parser.add_argument(
"--resume", type=str, default="", help="resume training from ckpt"
)
parser.add_argument(
"--ckpt", type=str, default="", help="load ckpt"
)
parser.add_argument(
"--config", type=str, default="tv2o-medium", help="model config name or file"
)
parser.add_argument(
"--task", type=str, default="train", choices=["train", "lora"], help="Full train or lora"
)
# dataset args
parser.add_argument(
"--data", type=str, default="data", help="dataset path"
)
parser.add_argument(
"--data-val-split",
type=int,
default=128,
help="the number of midi files divided into the validation set",
)
parser.add_argument("--max-len", type=int, default=512, help="max seq length for training")
parser.add_argument(
"--quality", action="store_true", default=False, help="check dataset quality"
)
# training args
parser.add_argument("--seed", type=int, default=0, help="seed")
parser.add_argument("--lr", type=float, default=1e-4, help="learning rate")
parser.add_argument("--weight-decay", type=float, default=0.01, help="weight decay")
parser.add_argument("--warmup-step", type=int, default=1e2, help="warmup step")
parser.add_argument("--max-step", type=int, default=1e4, help="max training step")
parser.add_argument("--grad-clip", type=float, default=1.0, help="gradient clip val")
parser.add_argument(
"--sample-seq", action="store_true", default=False, help="sample midi seq to reduce vram"
)
parser.add_argument(
"--gen-example-interval", type=int, default=1, help="generate example interval. set 0 to disable"
)
parser.add_argument("--batch-size-train", type=int, default=1, help="batch size for training")
parser.add_argument("--batch-size-val", type=int, default=1, help="batch size for validation")
parser.add_argument(
"--batch-size-gen-example", type=int, default=8, help="batch size for generate example"
)
parser.add_argument("--workers-train", type=int, default=1, help="workers num for training dataloader")
parser.add_argument("--workers-val", type=int, default=1, help="workers num for validation dataloader")
parser.add_argument("--acc-grad", type=int, default=4, help="gradient accumulation")
parser.add_argument(
"--accelerator",
type=str,
default="mps",
choices=["cpu", "gpu", "tpu", "ipu", "hpu", "auto", "mps"],
help="accelerator",
)
parser.add_argument("--precision", type=str, default="16-mixed", help="precision")
parser.add_argument("--devices", type=int, default=1, help="devices num")
parser.add_argument("--nodes", type=int, default=1, help="nodes num")
parser.add_argument(
"--disable-benchmark", action="store_true", default=False, help="disable cudnn benchmark"
)
parser.add_argument(
"--log-step", type=int, default=1, help="log training loss every n steps"
)
parser.add_argument("--val-step", type=int, default=10000, help="validate and save every n steps")
opt = parser.parse_args()
print(opt)
opt.data = "/Users/ethanlum/Desktop/midi-composer/data"
print(f"Dataset directory: {opt.data}")
if not os.path.exists("lightning_logs"):
os.mkdir("lightning_logs")
if not os.path.exists("sample"):
os.mkdir("sample")
pl.seed_everything(opt.seed)
print("---load dataset---")
if opt.config in config_name_list:
config = MIDIModelConfig.from_name(opt.config)
else:
config = MIDIModelConfig.from_name("tv2o-small")
tokenizer = config.tokenizer
midi_list = get_midi_list(opt.data)
print(f"Number of MIDI files found: {len(midi_list)}")
import os
print(f"Files in dataset directory: {os.listdir(opt.data)}")
random.shuffle(midi_list)
full_dataset_len = len(midi_list)
train_dataset_len = full_dataset_len - opt.data_val_split
train_midi_list = midi_list[:train_dataset_len]
val_midi_list = midi_list[train_dataset_len:]
train_dataset = MidiDataset(train_midi_list, tokenizer, max_len=opt.max_len, aug=False, check_quality=opt.quality,
rand_start=True)
val_dataset = MidiDataset(val_midi_list, tokenizer, max_len=opt.max_len, aug=False, check_quality=opt.quality,
rand_start=False)
train_dataloader = DataLoader(
train_dataset,
batch_size=opt.batch_size_train,
#batch_size = 8,
shuffle=True,
persistent_workers=True,
num_workers=opt.workers_train,
pin_memory=True,
collate_fn=train_dataset.collate_fn
)
val_dataloader = DataLoader(
val_dataset,
batch_size=opt.batch_size_val,
shuffle=False,
persistent_workers=True,
num_workers=opt.workers_val,
pin_memory=True,
collate_fn=val_dataset.collate_fn
)
print(f"train: {len(train_dataset)} val: {len(val_dataset)}")
torch.backends.cuda.enable_mem_efficient_sdp(True)
torch.backends.cuda.enable_flash_sdp(True)
model = TrainMIDIModel(config, lr=opt.lr, weight_decay=opt.weight_decay,
warmup=opt.warmup_step, max_step=opt.max_step,
sample_seq=opt.sample_seq, gen_example_interval=opt.gen_example_interval,
example_batch=opt.batch_size_gen_example)
if opt.ckpt:
ckpt = torch.load(opt.ckpt, map_location="cpu")
state_dict = ckpt.get("state_dict", ckpt)
model.load_state_dict(state_dict, strict=False)
elif opt.task == "lora":
raise ValueError("--ckpt must be set to train lora")
if opt.task == "lora":
model.requires_grad_(False)
lora_config = LoraConfig(
r=64,
target_modules=["q_proj", "o_proj", "k_proj", "v_proj", "gate_proj", "up_proj", "down_proj"],
task_type=TaskType.CAUSAL_LM,
bias="none",
lora_alpha=128,
lora_dropout=0
)
model.add_adapter(lora_config)
print("---start train---")
checkpoint_callback = ModelCheckpoint(
monitor="val/loss",
mode="min",
save_top_k=1,
save_last=True,
auto_insert_metric_name=False,
filename="epoch={epoch},loss={val/loss:.4f}",
)
callbacks = [checkpoint_callback]
trainer = Trainer(
val_check_interval=300, # Validate less frequently
check_val_every_n_epoch=2, # Validate every 2 epochs
max_epochs=10,
precision=16, # Use 16-bit precision to reduce memory
accumulate_grad_batches=1, # Minimal gradient accumulation
gradient_clip_val=opt.grad_clip, # Retain gradient clipping
accelerator="mps", # Ensure MPS accelerator is used
devices=1, # Use only one device to avoid memory overrun
enable_checkpointing=True, # Keep checkpoints enabled
num_sanity_val_steps=0, # Skip sanity validation for speed
num_nodes=opt.nodes,
max_steps=opt.max_step // 2, # Halve total steps for faster training
benchmark=not opt.disable_benchmark,
log_every_n_steps=10,
strategy="auto",
callbacks=callbacks,
)
ckpt_path = opt.resume
if ckpt_path == "":
ckpt_path = None
print("---start train---")
trainer.fit(model, train_dataloader, val_dataloader, ckpt_path=ckpt_path)
|