SteveZerb commited on
Commit
634c636
·
verified ·
1 Parent(s): af58e97

Upload export.py

Browse files
Files changed (1) hide show
  1. export.py +156 -0
export.py ADDED
@@ -0,0 +1,156 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ from itertools import chain
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+ from transformers import LlamaConfig, DynamicCache
7
+
8
+ from midi_model import MIDIModel, config_name_list, MIDIModelConfig
9
+
10
+
11
+ class MIDIModelBase(nn.Module):
12
+ def __init__(self, model):
13
+ super().__init__()
14
+ self.net = model.net
15
+
16
+ def forward(self, x, past_kv):
17
+ cache = DynamicCache.from_legacy_cache(past_kv)
18
+ x = self.net.embed_tokens(x)
19
+ x = x.sum(dim=-2)
20
+ x = self.net.forward(inputs_embeds=x,
21
+ past_key_values=cache,
22
+ use_cache=True)
23
+ return x.last_hidden_state, cache.to_legacy_cache()
24
+
25
+
26
+ class MIDIModelToken(nn.Module):
27
+ def __init__(self, model):
28
+ super().__init__()
29
+ self.net_token = model.net_token
30
+ self.lm_head = model.lm_head
31
+
32
+ def forward(self, hidden_state, x, past_kv):
33
+ cache = DynamicCache.from_legacy_cache(past_kv)
34
+ x = self.net_token.embed_tokens(x)
35
+ x = torch.cat([hidden_state, x], dim=1)
36
+ hidden_state = x
37
+ hidden_state = self.net_token.forward(inputs_embeds=hidden_state,
38
+ past_key_values=cache,
39
+ use_cache=True).last_hidden_state
40
+ return self.lm_head(hidden_state), cache.to_legacy_cache()
41
+
42
+
43
+ def export_onnx(model, model_inputs, input_names, output_names, dynamic_axes, meta_data, path):
44
+ import onnx
45
+ from onnxsim import simplify
46
+ torch.onnx.export(model, # model being run
47
+ model_inputs, # model input (or a tuple for multiple inputs)
48
+ path, # where to save the model (can be a file or file-like object)
49
+ export_params=True, # store the trained parameter weights inside the model file
50
+ opset_version=14, # the ONNX version to export the model to
51
+ do_constant_folding=True, # whether to execute constant folding for optimization
52
+ input_names=input_names, # the model's input names
53
+ output_names=output_names, # the model's output names
54
+ verbose=True,
55
+ dynamic_axes=dynamic_axes
56
+ )
57
+ onnx_model = onnx.load(path)
58
+ model_simp, check = simplify(onnx_model)
59
+ assert check, "Simplified ONNX model could not be validated"
60
+ for k, v in meta_data.items():
61
+ meta = model_simp.metadata_props.add()
62
+ meta.key, meta.value = k, str(v)
63
+ onnx.save(model_simp, path)
64
+ print('finished exporting onnx')
65
+
66
+
67
+ def get_past_kv(config: LlamaConfig, batch_size=1, past_seq_len=16, torch_dtype= torch.float32, device="cpu"):
68
+ head_size = config.hidden_size // config.num_attention_heads
69
+ past_kv = [
70
+ (
71
+ torch.rand(batch_size, config.num_attention_heads,
72
+ past_seq_len, head_size, dtype=torch_dtype, device=device),
73
+ torch.rand(batch_size, config.num_attention_heads,
74
+ past_seq_len, head_size, dtype=torch_dtype, device=device),
75
+ )
76
+ for _ in range(config.num_hidden_layers)
77
+ ]
78
+ input_names = list(
79
+ chain.from_iterable(
80
+ (f"past_key_values.{i}.key", f"past_key_values.{i}.value") for i in
81
+ range(config.num_hidden_layers)
82
+ )
83
+ )
84
+ output_names = list(
85
+ chain.from_iterable((f"present.{i}.key", f"present.{i}.value") for i in range(config.num_hidden_layers))
86
+ )
87
+ return past_kv, input_names, output_names
88
+
89
+
90
+ if __name__ == '__main__':
91
+ parser = argparse.ArgumentParser()
92
+ parser.add_argument(
93
+ "--ckpt", type=str, default="model.ckpt", help="load ckpt"
94
+ )
95
+ parser.add_argument(
96
+ "--config", type=str, default="tv2o-medium", choices=config_name_list, help="model config"
97
+ )
98
+ parser.add_argument(
99
+ "--lora", type=str, default="", help="load lora"
100
+ )
101
+ parser.add_argument(
102
+ "--model-base-out", type=str, default="model_base.onnx", help="model base output path"
103
+ )
104
+ parser.add_argument(
105
+ "--model-token-out", type=str, default="model_token.onnx", help="model token output path"
106
+ )
107
+ opt = parser.parse_args()
108
+ config = MIDIModelConfig.from_name(opt.config)
109
+ tokenizer = config.tokenizer
110
+ model = MIDIModel(config).to(device="cpu")
111
+ ckpt = torch.load(opt.ckpt, map_location="cpu")
112
+ state_dict = ckpt.get("state_dict", ckpt)
113
+ model.load_state_dict(state_dict, strict=False)
114
+ if opt.lora != "":
115
+ model.load_merge_lora(opt.lora)
116
+ model.eval()
117
+ model_base = MIDIModelBase(model).eval()
118
+ model_token = MIDIModelToken(model).eval()
119
+ meta_data = {"config_name": opt.config, "config": config}
120
+ past_kv_shape = {0: "batch", 2: "past_seq"}
121
+ present_kv_shape = {0: "batch", 2: "present_seq"}
122
+ with torch.no_grad():
123
+ dynamic_axes = {
124
+ "x": {0: "batch", 1: "mid_seq", 2: "token_seq"},
125
+ "hidden": {0: "batch", 1: "mid_seq"}
126
+ }
127
+ x = torch.randint(tokenizer.vocab_size, (1, 16, tokenizer.max_token_seq), dtype=torch.int64, device="cpu")
128
+ past_kv, input_names, output_names= get_past_kv(config.net_config, past_seq_len=16,
129
+ torch_dtype=torch.float32)
130
+ for name in input_names:
131
+ dynamic_axes[name] = past_kv_shape
132
+ for name in output_names:
133
+ dynamic_axes[name] = present_kv_shape
134
+ input_names = [ "x"] + input_names
135
+ output_names = ["hidden"] + output_names
136
+ export_onnx(model_base, (x, past_kv),
137
+ input_names, output_names, dynamic_axes, meta_data, opt.model_base_out)
138
+
139
+ dynamic_axes = {
140
+ "x": {0: "batch", 1: "token_seq"},
141
+ "hidden": {0: "batch", 1: "states"},
142
+ "y": {0: "batch", 1: "token_seq1"}
143
+ }
144
+ hidden = torch.randn(1, 1, config.n_embd, device="cpu")
145
+ x = torch.randint(tokenizer.vocab_size, (1, tokenizer.max_token_seq //2), dtype=torch.int64, device="cpu")
146
+ past_kv, input_names, output_names = get_past_kv(config.net_token_config,
147
+ past_seq_len=(tokenizer.max_token_seq // 2),
148
+ torch_dtype=torch.float32)
149
+ for name in input_names:
150
+ dynamic_axes[name] = past_kv_shape
151
+ for name in output_names:
152
+ dynamic_axes[name] = present_kv_shape
153
+ input_names = ["hidden", "x"] + input_names
154
+ output_names = ["y"] + output_names
155
+ export_onnx(model_token, (hidden, x, past_kv),
156
+ input_names, output_names, dynamic_axes, meta_data, opt.model_token_out)