Spaces:
Runtime error
Runtime error
Upload export.py
Browse files
export.py
ADDED
|
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
from itertools import chain
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
from transformers import LlamaConfig, DynamicCache
|
| 7 |
+
|
| 8 |
+
from midi_model import MIDIModel, config_name_list, MIDIModelConfig
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class MIDIModelBase(nn.Module):
|
| 12 |
+
def __init__(self, model):
|
| 13 |
+
super().__init__()
|
| 14 |
+
self.net = model.net
|
| 15 |
+
|
| 16 |
+
def forward(self, x, past_kv):
|
| 17 |
+
cache = DynamicCache.from_legacy_cache(past_kv)
|
| 18 |
+
x = self.net.embed_tokens(x)
|
| 19 |
+
x = x.sum(dim=-2)
|
| 20 |
+
x = self.net.forward(inputs_embeds=x,
|
| 21 |
+
past_key_values=cache,
|
| 22 |
+
use_cache=True)
|
| 23 |
+
return x.last_hidden_state, cache.to_legacy_cache()
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class MIDIModelToken(nn.Module):
|
| 27 |
+
def __init__(self, model):
|
| 28 |
+
super().__init__()
|
| 29 |
+
self.net_token = model.net_token
|
| 30 |
+
self.lm_head = model.lm_head
|
| 31 |
+
|
| 32 |
+
def forward(self, hidden_state, x, past_kv):
|
| 33 |
+
cache = DynamicCache.from_legacy_cache(past_kv)
|
| 34 |
+
x = self.net_token.embed_tokens(x)
|
| 35 |
+
x = torch.cat([hidden_state, x], dim=1)
|
| 36 |
+
hidden_state = x
|
| 37 |
+
hidden_state = self.net_token.forward(inputs_embeds=hidden_state,
|
| 38 |
+
past_key_values=cache,
|
| 39 |
+
use_cache=True).last_hidden_state
|
| 40 |
+
return self.lm_head(hidden_state), cache.to_legacy_cache()
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def export_onnx(model, model_inputs, input_names, output_names, dynamic_axes, meta_data, path):
|
| 44 |
+
import onnx
|
| 45 |
+
from onnxsim import simplify
|
| 46 |
+
torch.onnx.export(model, # model being run
|
| 47 |
+
model_inputs, # model input (or a tuple for multiple inputs)
|
| 48 |
+
path, # where to save the model (can be a file or file-like object)
|
| 49 |
+
export_params=True, # store the trained parameter weights inside the model file
|
| 50 |
+
opset_version=14, # the ONNX version to export the model to
|
| 51 |
+
do_constant_folding=True, # whether to execute constant folding for optimization
|
| 52 |
+
input_names=input_names, # the model's input names
|
| 53 |
+
output_names=output_names, # the model's output names
|
| 54 |
+
verbose=True,
|
| 55 |
+
dynamic_axes=dynamic_axes
|
| 56 |
+
)
|
| 57 |
+
onnx_model = onnx.load(path)
|
| 58 |
+
model_simp, check = simplify(onnx_model)
|
| 59 |
+
assert check, "Simplified ONNX model could not be validated"
|
| 60 |
+
for k, v in meta_data.items():
|
| 61 |
+
meta = model_simp.metadata_props.add()
|
| 62 |
+
meta.key, meta.value = k, str(v)
|
| 63 |
+
onnx.save(model_simp, path)
|
| 64 |
+
print('finished exporting onnx')
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def get_past_kv(config: LlamaConfig, batch_size=1, past_seq_len=16, torch_dtype= torch.float32, device="cpu"):
|
| 68 |
+
head_size = config.hidden_size // config.num_attention_heads
|
| 69 |
+
past_kv = [
|
| 70 |
+
(
|
| 71 |
+
torch.rand(batch_size, config.num_attention_heads,
|
| 72 |
+
past_seq_len, head_size, dtype=torch_dtype, device=device),
|
| 73 |
+
torch.rand(batch_size, config.num_attention_heads,
|
| 74 |
+
past_seq_len, head_size, dtype=torch_dtype, device=device),
|
| 75 |
+
)
|
| 76 |
+
for _ in range(config.num_hidden_layers)
|
| 77 |
+
]
|
| 78 |
+
input_names = list(
|
| 79 |
+
chain.from_iterable(
|
| 80 |
+
(f"past_key_values.{i}.key", f"past_key_values.{i}.value") for i in
|
| 81 |
+
range(config.num_hidden_layers)
|
| 82 |
+
)
|
| 83 |
+
)
|
| 84 |
+
output_names = list(
|
| 85 |
+
chain.from_iterable((f"present.{i}.key", f"present.{i}.value") for i in range(config.num_hidden_layers))
|
| 86 |
+
)
|
| 87 |
+
return past_kv, input_names, output_names
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
if __name__ == '__main__':
|
| 91 |
+
parser = argparse.ArgumentParser()
|
| 92 |
+
parser.add_argument(
|
| 93 |
+
"--ckpt", type=str, default="model.ckpt", help="load ckpt"
|
| 94 |
+
)
|
| 95 |
+
parser.add_argument(
|
| 96 |
+
"--config", type=str, default="tv2o-medium", choices=config_name_list, help="model config"
|
| 97 |
+
)
|
| 98 |
+
parser.add_argument(
|
| 99 |
+
"--lora", type=str, default="", help="load lora"
|
| 100 |
+
)
|
| 101 |
+
parser.add_argument(
|
| 102 |
+
"--model-base-out", type=str, default="model_base.onnx", help="model base output path"
|
| 103 |
+
)
|
| 104 |
+
parser.add_argument(
|
| 105 |
+
"--model-token-out", type=str, default="model_token.onnx", help="model token output path"
|
| 106 |
+
)
|
| 107 |
+
opt = parser.parse_args()
|
| 108 |
+
config = MIDIModelConfig.from_name(opt.config)
|
| 109 |
+
tokenizer = config.tokenizer
|
| 110 |
+
model = MIDIModel(config).to(device="cpu")
|
| 111 |
+
ckpt = torch.load(opt.ckpt, map_location="cpu")
|
| 112 |
+
state_dict = ckpt.get("state_dict", ckpt)
|
| 113 |
+
model.load_state_dict(state_dict, strict=False)
|
| 114 |
+
if opt.lora != "":
|
| 115 |
+
model.load_merge_lora(opt.lora)
|
| 116 |
+
model.eval()
|
| 117 |
+
model_base = MIDIModelBase(model).eval()
|
| 118 |
+
model_token = MIDIModelToken(model).eval()
|
| 119 |
+
meta_data = {"config_name": opt.config, "config": config}
|
| 120 |
+
past_kv_shape = {0: "batch", 2: "past_seq"}
|
| 121 |
+
present_kv_shape = {0: "batch", 2: "present_seq"}
|
| 122 |
+
with torch.no_grad():
|
| 123 |
+
dynamic_axes = {
|
| 124 |
+
"x": {0: "batch", 1: "mid_seq", 2: "token_seq"},
|
| 125 |
+
"hidden": {0: "batch", 1: "mid_seq"}
|
| 126 |
+
}
|
| 127 |
+
x = torch.randint(tokenizer.vocab_size, (1, 16, tokenizer.max_token_seq), dtype=torch.int64, device="cpu")
|
| 128 |
+
past_kv, input_names, output_names= get_past_kv(config.net_config, past_seq_len=16,
|
| 129 |
+
torch_dtype=torch.float32)
|
| 130 |
+
for name in input_names:
|
| 131 |
+
dynamic_axes[name] = past_kv_shape
|
| 132 |
+
for name in output_names:
|
| 133 |
+
dynamic_axes[name] = present_kv_shape
|
| 134 |
+
input_names = [ "x"] + input_names
|
| 135 |
+
output_names = ["hidden"] + output_names
|
| 136 |
+
export_onnx(model_base, (x, past_kv),
|
| 137 |
+
input_names, output_names, dynamic_axes, meta_data, opt.model_base_out)
|
| 138 |
+
|
| 139 |
+
dynamic_axes = {
|
| 140 |
+
"x": {0: "batch", 1: "token_seq"},
|
| 141 |
+
"hidden": {0: "batch", 1: "states"},
|
| 142 |
+
"y": {0: "batch", 1: "token_seq1"}
|
| 143 |
+
}
|
| 144 |
+
hidden = torch.randn(1, 1, config.n_embd, device="cpu")
|
| 145 |
+
x = torch.randint(tokenizer.vocab_size, (1, tokenizer.max_token_seq //2), dtype=torch.int64, device="cpu")
|
| 146 |
+
past_kv, input_names, output_names = get_past_kv(config.net_token_config,
|
| 147 |
+
past_seq_len=(tokenizer.max_token_seq // 2),
|
| 148 |
+
torch_dtype=torch.float32)
|
| 149 |
+
for name in input_names:
|
| 150 |
+
dynamic_axes[name] = past_kv_shape
|
| 151 |
+
for name in output_names:
|
| 152 |
+
dynamic_axes[name] = present_kv_shape
|
| 153 |
+
input_names = ["hidden", "x"] + input_names
|
| 154 |
+
output_names = ["y"] + output_names
|
| 155 |
+
export_onnx(model_token, (hidden, x, past_kv),
|
| 156 |
+
input_names, output_names, dynamic_axes, meta_data, opt.model_token_out)
|