SteveZerb commited on
Commit
6f4ab8b
·
verified ·
1 Parent(s): e53d6c4

Upload app.py

Browse files
Files changed (1) hide show
  1. app.py +503 -0
app.py ADDED
@@ -0,0 +1,503 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import spaces
2
+ import random
3
+ import argparse
4
+ import glob
5
+ import json
6
+ import os
7
+ import time
8
+ from concurrent.futures import ThreadPoolExecutor
9
+
10
+ import gradio as gr
11
+ import numpy as np
12
+ import torch
13
+ import torch.nn.functional as F
14
+ import tqdm
15
+ from huggingface_hub import hf_hub_download
16
+ from transformers import DynamicCache
17
+
18
+ import MIDI
19
+ from midi_model import MIDIModel, MIDIModelConfig
20
+ from midi_synthesizer import MidiSynthesizer
21
+
22
+ MAX_SEED = np.iinfo(np.int32).max
23
+ in_space = os.getenv("SYSTEM") == "spaces"
24
+
25
+
26
+ @torch.inference_mode()
27
+ def generate(model: MIDIModel, prompt=None, batch_size=1, max_len=512, temp=1.0, top_p=0.98, top_k=20,
28
+ disable_patch_change=False, disable_control_change=False, disable_channels=None, generator=None):
29
+ tokenizer = model.tokenizer
30
+ if disable_channels is not None:
31
+ disable_channels = [tokenizer.parameter_ids["channel"][c] for c in disable_channels]
32
+ else:
33
+ disable_channels = []
34
+ max_token_seq = tokenizer.max_token_seq
35
+ if prompt is None:
36
+ input_tensor = torch.full((1, max_token_seq), tokenizer.pad_id, dtype=torch.long, device=model.device)
37
+ input_tensor[0, 0] = tokenizer.bos_id # bos
38
+ input_tensor = input_tensor.unsqueeze(0)
39
+ input_tensor = torch.cat([input_tensor] * batch_size, dim=0)
40
+ else:
41
+ if len(prompt.shape) == 2:
42
+ prompt = prompt[None, :]
43
+ prompt = np.repeat(prompt, repeats=batch_size, axis=0)
44
+ elif prompt.shape[0] == 1:
45
+ prompt = np.repeat(prompt, repeats=batch_size, axis=0)
46
+ elif len(prompt.shape) != 3 or prompt.shape[0] != batch_size:
47
+ raise ValueError(f"invalid shape for prompt, {prompt.shape}")
48
+ prompt = prompt[..., :max_token_seq]
49
+ if prompt.shape[-1] < max_token_seq:
50
+ prompt = np.pad(prompt, ((0, 0), (0, 0), (0, max_token_seq - prompt.shape[-1])),
51
+ mode="constant", constant_values=tokenizer.pad_id)
52
+ input_tensor = torch.from_numpy(prompt).to(dtype=torch.long, device=model.device)
53
+ cur_len = input_tensor.shape[1]
54
+ bar = tqdm.tqdm(desc="generating", total=max_len - cur_len, disable=in_space)
55
+ cache1 = DynamicCache()
56
+ past_len = 0
57
+ with bar:
58
+ while cur_len < max_len:
59
+ end = [False] * batch_size
60
+ hidden = model.forward(input_tensor[:, past_len:], cache=cache1)[:, -1]
61
+ next_token_seq = None
62
+ event_names = [""] * batch_size
63
+ cache2 = DynamicCache()
64
+ for i in range(max_token_seq):
65
+ mask = torch.zeros((batch_size, tokenizer.vocab_size), dtype=torch.int64, device=model.device)
66
+ for b in range(batch_size):
67
+ if end[b]:
68
+ mask[b, tokenizer.pad_id] = 1
69
+ continue
70
+ if i == 0:
71
+ mask_ids = list(tokenizer.event_ids.values()) + [tokenizer.eos_id]
72
+ if disable_patch_change:
73
+ mask_ids.remove(tokenizer.event_ids["patch_change"])
74
+ if disable_control_change:
75
+ mask_ids.remove(tokenizer.event_ids["control_change"])
76
+ mask[b, mask_ids] = 1
77
+ else:
78
+ param_names = tokenizer.events[event_names[b]]
79
+ if i > len(param_names):
80
+ mask[b, tokenizer.pad_id] = 1
81
+ continue
82
+ param_name = param_names[i - 1]
83
+ mask_ids = tokenizer.parameter_ids[param_name]
84
+ if param_name == "channel":
85
+ mask_ids = [i for i in mask_ids if i not in disable_channels]
86
+ mask[b, mask_ids] = 1
87
+ mask = mask.unsqueeze(1)
88
+ x = next_token_seq
89
+ if i != 0:
90
+ hidden = None
91
+ x = x[:, -1:]
92
+ logits = model.forward_token(hidden, x, cache=cache2)[:, -1:]
93
+ scores = torch.softmax(logits / temp, dim=-1) * mask
94
+ samples = model.sample_top_p_k(scores, top_p, top_k, generator=generator)
95
+ if i == 0:
96
+ next_token_seq = samples
97
+ for b in range(batch_size):
98
+ if end[b]:
99
+ continue
100
+ eid = samples[b].item()
101
+ if eid == tokenizer.eos_id:
102
+ end[b] = True
103
+ else:
104
+ event_names[b] = tokenizer.id_events[eid]
105
+ else:
106
+ next_token_seq = torch.cat([next_token_seq, samples], dim=1)
107
+ if all([len(tokenizer.events[event_names[b]]) == i for b in range(batch_size) if not end[b]]):
108
+ break
109
+ if next_token_seq.shape[1] < max_token_seq:
110
+ next_token_seq = F.pad(next_token_seq, (0, max_token_seq - next_token_seq.shape[1]),
111
+ "constant", value=tokenizer.pad_id)
112
+ next_token_seq = next_token_seq.unsqueeze(1)
113
+ input_tensor = torch.cat([input_tensor, next_token_seq], dim=1)
114
+ past_len = cur_len
115
+ cur_len += 1
116
+ bar.update(1)
117
+ yield next_token_seq[:, 0].cpu().numpy()
118
+ if all(end):
119
+ break
120
+
121
+
122
+ def create_msg(name, data):
123
+ return {"name": name, "data": data}
124
+
125
+
126
+ def send_msgs(msgs):
127
+ return json.dumps(msgs)
128
+
129
+
130
+ def get_duration(model_name, tab, mid_seq, continuation_state, continuation_select, instruments, drum_kit, bpm,
131
+ time_sig, key_sig, mid, midi_events, reduce_cc_st, remap_track_channel, add_default_instr,
132
+ remove_empty_channels, seed, seed_rand, gen_events, temp, top_p, top_k, allow_cc):
133
+ t = gen_events // 23
134
+ if "large" in model_name:
135
+ t = gen_events // 14
136
+ return t + 5
137
+
138
+
139
+ @spaces.GPU(duration=get_duration)
140
+ def run(model_name, tab, mid_seq, continuation_state, continuation_select, instruments, drum_kit, bpm, time_sig,
141
+ key_sig, mid, midi_events, reduce_cc_st, remap_track_channel, add_default_instr, remove_empty_channels,
142
+ seed, seed_rand, gen_events, temp, top_p, top_k, allow_cc):
143
+ model = models[model_name]
144
+ model.to(device=opt.device)
145
+ tokenizer = model.tokenizer
146
+ bpm = int(bpm)
147
+ if time_sig == "auto":
148
+ time_sig = None
149
+ time_sig_nn = 4
150
+ time_sig_dd = 2
151
+ else:
152
+ time_sig_nn, time_sig_dd = time_sig.split('/')
153
+ time_sig_nn = int(time_sig_nn)
154
+ time_sig_dd = {2: 1, 4: 2, 8: 3}[int(time_sig_dd)]
155
+ if key_sig == 0:
156
+ key_sig = None
157
+ key_sig_sf = 0
158
+ key_sig_mi = 0
159
+ else:
160
+ key_sig = (key_sig - 1)
161
+ key_sig_sf = key_sig // 2 - 7
162
+ key_sig_mi = key_sig % 2
163
+ gen_events = int(gen_events)
164
+ max_len = gen_events
165
+ if seed_rand:
166
+ seed = random.randint(0, MAX_SEED)
167
+ generator = torch.Generator(opt.device).manual_seed(seed)
168
+ disable_patch_change = False
169
+ disable_channels = None
170
+ if tab == 0:
171
+ i = 0
172
+ mid = [[tokenizer.bos_id] + [tokenizer.pad_id] * (tokenizer.max_token_seq - 1)]
173
+ if tokenizer.version == "v2":
174
+ if time_sig is not None:
175
+ mid.append(tokenizer.event2tokens(["time_signature", 0, 0, 0, time_sig_nn - 1, time_sig_dd - 1]))
176
+ if key_sig is not None:
177
+ mid.append(tokenizer.event2tokens(["key_signature", 0, 0, 0, key_sig_sf + 7, key_sig_mi]))
178
+ if bpm != 0:
179
+ mid.append(tokenizer.event2tokens(["set_tempo", 0, 0, 0, bpm]))
180
+ patches = {}
181
+ if instruments is None:
182
+ instruments = []
183
+ for instr in instruments:
184
+ patches[i] = patch2number[instr]
185
+ i = (i + 1) if i != 8 else 10
186
+ if drum_kit != "None":
187
+ patches[9] = drum_kits2number[drum_kit]
188
+ for i, (c, p) in enumerate(patches.items()):
189
+ mid.append(tokenizer.event2tokens(["patch_change", 0, 0, i + 1, c, p]))
190
+ mid = np.asarray([mid] * OUTPUT_BATCH_SIZE, dtype=np.int64)
191
+ mid_seq = mid.tolist()
192
+ if len(instruments) > 0:
193
+ disable_patch_change = True
194
+ disable_channels = [i for i in range(16) if i not in patches]
195
+ elif tab == 1 and mid is not None:
196
+ eps = 4 if reduce_cc_st else 0
197
+ mid = tokenizer.tokenize(MIDI.midi2score(mid), cc_eps=eps, tempo_eps=eps,
198
+ remap_track_channel=remap_track_channel,
199
+ add_default_instr=add_default_instr,
200
+ remove_empty_channels=remove_empty_channels)
201
+ mid = mid[:int(midi_events)]
202
+ mid = np.asarray([mid] * OUTPUT_BATCH_SIZE, dtype=np.int64)
203
+ mid_seq = mid.tolist()
204
+ elif tab == 2 and mid_seq is not None:
205
+ mid = np.asarray(mid_seq, dtype=np.int64)
206
+ if continuation_select > 0:
207
+ continuation_state.append(mid_seq)
208
+ mid = np.repeat(mid[continuation_select - 1:continuation_select], repeats=OUTPUT_BATCH_SIZE, axis=0)
209
+ mid_seq = mid.tolist()
210
+ else:
211
+ continuation_state.append(mid.shape[1])
212
+ else:
213
+ continuation_state = [0]
214
+ mid = [[tokenizer.bos_id] + [tokenizer.pad_id] * (tokenizer.max_token_seq - 1)]
215
+ mid = np.asarray([mid] * OUTPUT_BATCH_SIZE, dtype=np.int64)
216
+ mid_seq = mid.tolist()
217
+
218
+ if mid is not None:
219
+ max_len += mid.shape[1]
220
+
221
+ init_msgs = [create_msg("progress", [0, gen_events])]
222
+ if not (tab == 2 and continuation_select == 0):
223
+ for i in range(OUTPUT_BATCH_SIZE):
224
+ events = [tokenizer.tokens2event(tokens) for tokens in mid_seq[i]]
225
+ init_msgs += [create_msg("visualizer_clear", [i, tokenizer.version]),
226
+ create_msg("visualizer_append", [i, events])]
227
+ yield mid_seq, continuation_state, seed, send_msgs(init_msgs)
228
+ midi_generator = generate(model, mid, batch_size=OUTPUT_BATCH_SIZE, max_len=max_len, temp=temp,
229
+ top_p=top_p, top_k=top_k, disable_patch_change=disable_patch_change,
230
+ disable_control_change=not allow_cc, disable_channels=disable_channels,
231
+ generator=generator)
232
+ events = [list() for i in range(OUTPUT_BATCH_SIZE)]
233
+ t = time.time() + 1
234
+ for i, token_seqs in enumerate(midi_generator):
235
+ token_seqs = token_seqs.tolist()
236
+ for j in range(OUTPUT_BATCH_SIZE):
237
+ token_seq = token_seqs[j]
238
+ mid_seq[j].append(token_seq)
239
+ events[j].append(tokenizer.tokens2event(token_seq))
240
+ if time.time() - t > 0.5:
241
+ msgs = [create_msg("progress", [i + 1, gen_events])]
242
+ for j in range(OUTPUT_BATCH_SIZE):
243
+ msgs += [create_msg("visualizer_append", [j, events[j]])]
244
+ events[j] = list()
245
+ yield mid_seq, continuation_state, seed, send_msgs(msgs)
246
+ t = time.time()
247
+ yield mid_seq, continuation_state, seed, send_msgs([])
248
+
249
+
250
+ def finish_run(model_name, mid_seq):
251
+ if mid_seq is None:
252
+ outputs = [None] * OUTPUT_BATCH_SIZE
253
+ return *outputs, []
254
+ tokenizer = models[model_name].tokenizer
255
+ outputs = []
256
+ end_msgs = [create_msg("progress", [0, 0])]
257
+ if not os.path.exists("outputs"):
258
+ os.mkdir("outputs")
259
+ for i in range(OUTPUT_BATCH_SIZE):
260
+ events = [tokenizer.tokens2event(tokens) for tokens in mid_seq[i]]
261
+ mid = tokenizer.detokenize(mid_seq[i])
262
+ with open(f"outputs/output{i + 1}.mid", 'wb') as f:
263
+ f.write(MIDI.score2midi(mid))
264
+ outputs.append(f"outputs/output{i + 1}.mid")
265
+ end_msgs += [create_msg("visualizer_clear", [i, tokenizer.version]),
266
+ create_msg("visualizer_append", [i, events]),
267
+ create_msg("visualizer_end", i)]
268
+ return *outputs, send_msgs(end_msgs)
269
+
270
+
271
+ def synthesis_task(mid):
272
+ return synthesizer.synthesis(MIDI.score2opus(mid))
273
+
274
+ def render_audio(model_name, mid_seq, should_render_audio):
275
+ if (not should_render_audio) or mid_seq is None:
276
+ outputs = [None] * OUTPUT_BATCH_SIZE
277
+ return tuple(outputs)
278
+ tokenizer = models[model_name].tokenizer
279
+ outputs = []
280
+ if not os.path.exists("outputs"):
281
+ os.mkdir("outputs")
282
+ audio_futures = []
283
+ for i in range(OUTPUT_BATCH_SIZE):
284
+ mid = tokenizer.detokenize(mid_seq[i])
285
+ audio_future = thread_pool.submit(synthesis_task, mid)
286
+ audio_futures.append(audio_future)
287
+ for future in audio_futures:
288
+ outputs.append((44100, future.result()))
289
+ if OUTPUT_BATCH_SIZE == 1:
290
+ return outputs[0]
291
+ return tuple(outputs)
292
+
293
+
294
+ def undo_continuation(model_name, mid_seq, continuation_state):
295
+ if mid_seq is None or len(continuation_state) < 2:
296
+ return mid_seq, continuation_state, send_msgs([])
297
+ tokenizer = models[model_name].tokenizer
298
+ if isinstance(continuation_state[-1], list):
299
+ mid_seq = continuation_state[-1]
300
+ else:
301
+ mid_seq = [ms[:continuation_state[-1]] for ms in mid_seq]
302
+ continuation_state = continuation_state[:-1]
303
+ end_msgs = [create_msg("progress", [0, 0])]
304
+ for i in range(OUTPUT_BATCH_SIZE):
305
+ events = [tokenizer.tokens2event(tokens) for tokens in mid_seq[i]]
306
+ end_msgs += [create_msg("visualizer_clear", [i, tokenizer.version]),
307
+ create_msg("visualizer_append", [i, events]),
308
+ create_msg("visualizer_end", i)]
309
+ return mid_seq, continuation_state, send_msgs(end_msgs)
310
+
311
+
312
+ def load_javascript(dir="javascript"):
313
+ scripts_list = glob.glob(f"{dir}/*.js")
314
+ javascript = ""
315
+ for path in scripts_list:
316
+ with open(path, "r", encoding="utf8") as jsfile:
317
+ js_content = jsfile.read()
318
+ js_content = js_content.replace("const MIDI_OUTPUT_BATCH_SIZE=4;",
319
+ f"const MIDI_OUTPUT_BATCH_SIZE={OUTPUT_BATCH_SIZE};")
320
+ javascript += f"\n<!-- {path} --><script>{js_content}</script>"
321
+ template_response_ori = gr.routes.templates.TemplateResponse
322
+
323
+ def template_response(*args, **kwargs):
324
+ res = template_response_ori(*args, **kwargs)
325
+ res.body = res.body.replace(
326
+ b'</head>', f'{javascript}</head>'.encode("utf8"))
327
+ res.init_headers()
328
+ return res
329
+
330
+ gr.routes.templates.TemplateResponse = template_response
331
+
332
+
333
+ def hf_hub_download_retry(repo_id, filename):
334
+ print(f"downloading {repo_id} {filename}")
335
+ retry = 0
336
+ err = None
337
+ while retry < 30:
338
+ try:
339
+ return hf_hub_download(repo_id=repo_id, filename=filename)
340
+ except Exception as e:
341
+ err = e
342
+ retry += 1
343
+ if err:
344
+ raise err
345
+
346
+
347
+ number2drum_kits = {-1: "None", 0: "Standard", 8: "Room", 16: "Power", 24: "Electric", 25: "TR-808", 32: "Jazz",
348
+ 40: "Blush", 48: "Orchestra"}
349
+ patch2number = {v: k for k, v in MIDI.Number2patch.items()}
350
+ drum_kits2number = {v: k for k, v in number2drum_kits.items()}
351
+ key_signatures = ['C♭', 'A♭m', 'G♭', 'E♭m', 'D♭', 'B♭m', 'A♭', 'Fm', 'E♭', 'Cm', 'B♭', 'Gm', 'F', 'Dm',
352
+ 'C', 'Am', 'G', 'Em', 'D', 'Bm', 'A', 'F♯m', 'E', 'C♯m', 'B', 'G♯m', 'F♯', 'D♯m', 'C♯', 'A♯m']
353
+
354
+ if __name__ == "__main__":
355
+ parser = argparse.ArgumentParser()
356
+ parser.add_argument("--share", action="store_true", default=False, help="share gradio app")
357
+ parser.add_argument("--port", type=int, default=7860, help="gradio server port")
358
+ parser.add_argument("--device", type=str, default="cuda", help="device to run model")
359
+ parser.add_argument("--batch", type=int, default=8, help="batch size")
360
+ parser.add_argument("--max-gen", type=int, default=1024, help="max")
361
+ opt = parser.parse_args()
362
+ OUTPUT_BATCH_SIZE = opt.batch
363
+ soundfont_path = hf_hub_download_retry(repo_id="skytnt/midi-model", filename="soundfont.sf2")
364
+ thread_pool = ThreadPoolExecutor(max_workers=OUTPUT_BATCH_SIZE)
365
+ synthesizer = MidiSynthesizer(soundfont_path)
366
+ models_info = {
367
+ "generic pretrain model (tv2o-medium) by skytnt": [
368
+ "skytnt/midi-model-tv2o-medium", {
369
+ "jpop": "skytnt/midi-model-tv2om-jpop-lora",
370
+ "touhou": "skytnt/midi-model-tv2om-touhou-lora"
371
+ }
372
+ ],
373
+ "generic pretrain model (tv2o-large) by asigalov61": [
374
+ "asigalov61/Music-Llama", {}
375
+ ],
376
+ "generic pretrain model (tv2o-medium) by asigalov61": [
377
+ "asigalov61/Music-Llama-Medium", {}
378
+ ],
379
+ "generic pretrain model (tv1-medium) by skytnt": [
380
+ "skytnt/midi-model", {}
381
+ ],
382
+ "custom model test": [
383
+ "skytnt/midi-model", {}
384
+ ]
385
+ }
386
+ models = {}
387
+ if opt.device == "cuda":
388
+ torch.backends.cudnn.deterministic = True
389
+ torch.backends.cudnn.benchmark = False
390
+ torch.backends.cuda.matmul.allow_tf32 = True
391
+ torch.backends.cudnn.allow_tf32 = True
392
+ torch.backends.cuda.enable_mem_efficient_sdp(True)
393
+ torch.backends.cuda.enable_flash_sdp(True)
394
+ for name, (repo_id, loras) in models_info.items():
395
+ model = MIDIModel.from_pretrained(repo_id)
396
+ model.to(device="cpu", dtype=torch.float32)
397
+ models[name] = model
398
+ for lora_name, lora_repo in loras.items():
399
+ model = MIDIModel.from_pretrained(repo_id)
400
+ print(f"loading lora {lora_repo} for {name}")
401
+ model = model.load_merge_lora(lora_repo)
402
+ model.to(device="cpu", dtype=torch.float32)
403
+ models[f"{name} with {lora_name} lora"] = model
404
+
405
+ load_javascript()
406
+ app = gr.Blocks(theme=gr.themes.Soft())
407
+ with app:
408
+ gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Midi Composer</h1>")
409
+ gr.Markdown(
410
+ "A modified version of the Midi-Generator for the IAT-360 Course by Ethan Lum\n\n"
411
+ "Demo for [SkyTNT/midi-model](https://github.com/SkyTNT/midi-model)\n\n"
412
+ "[Open In Colab]"
413
+ "(https://colab.research.google.com/github/SkyTNT/midi-model/blob/main/demo.ipynb)"
414
+ " or [download windows app](https://github.com/SkyTNT/midi-model/releases)"
415
+ " for unlimited generation\n\n"
416
+ )
417
+ js_msg = gr.Textbox(elem_id="msg_receiver", visible=False)
418
+ js_msg.change(None, [js_msg], [], js="""
419
+ (msg_json) =>{
420
+ let msgs = JSON.parse(msg_json);
421
+ executeCallbacks(msgReceiveCallbacks, msgs);
422
+ return [];
423
+ }
424
+ """)
425
+ input_model = gr.Dropdown(label="select model", choices=list(models.keys()),
426
+ type="value", value=list(models.keys())[0])
427
+ tab_select = gr.State(value=0)
428
+ with gr.Tabs():
429
+
430
+ with gr.TabItem("midi prompt") as tab1:
431
+ input_midi = gr.File(label="input midi", file_types=[".midi", ".mid"], type="binary")
432
+ input_midi_events = gr.Slider(label="use first n midi events as prompt", minimum=1, maximum=512,
433
+ step=1,
434
+ value=128)
435
+ input_reduce_cc_st = gr.Checkbox(label="reduce control_change and set_tempo events", value=True)
436
+ input_remap_track_channel = gr.Checkbox(
437
+ label="remap tracks and channels so each track has only one channel and in order", value=True)
438
+ input_add_default_instr = gr.Checkbox(
439
+ label="add a default instrument to channels that don't have an instrument", value=True)
440
+ input_remove_empty_channels = gr.Checkbox(label="remove channels without notes", value=False)
441
+ example2 = gr.Examples([[file, 128] for file in glob.glob("example/*.mid")],
442
+ [input_midi, input_midi_events])
443
+ with gr.TabItem("last output prompt") as tab3:
444
+ gr.Markdown("Continue generating on the last output.")
445
+ input_continuation_select = gr.Radio(label="select output to continue generating", value="all",
446
+ choices=["all"] + [f"output{i + 1}" for i in
447
+ range(OUTPUT_BATCH_SIZE)],
448
+ type="index"
449
+ )
450
+ undo_btn = gr.Button("undo the last continuation")
451
+
452
+
453
+ tab1.select(lambda: 1, None, tab_select, queue=False)
454
+ tab3.select(lambda: 2, None, tab_select, queue=False)
455
+ input_seed = gr.Slider(label="seed", minimum=0, maximum=2 ** 31 - 1,
456
+ step=1, value=0)
457
+ input_seed_rand = gr.Checkbox(label="random seed", value=True)
458
+ input_gen_events = gr.Slider(label="generate max n midi events", minimum=1, maximum=opt.max_gen,
459
+ step=1, value=opt.max_gen // 2)
460
+ with gr.Accordion("options", open=False):
461
+ input_temp = gr.Slider(label="temperature", minimum=0.1, maximum=1.2, step=0.01, value=1)
462
+ input_top_p = gr.Slider(label="top p", minimum=0.1, maximum=1, step=0.01, value=0.95)
463
+ input_top_k = gr.Slider(label="top k", minimum=1, maximum=128, step=1, value=20)
464
+ input_allow_cc = gr.Checkbox(label="allow midi cc event", value=True)
465
+ input_render_audio = gr.Checkbox(label="render audio after generation", value=True)
466
+ example3 = gr.Examples([[1, 0.94, 128], [1, 0.98, 20], [1, 0.98, 12]],
467
+ [input_temp, input_top_p, input_top_k])
468
+ run_btn = gr.Button("generate", variant="primary")
469
+ # stop_btn = gr.Button("stop and output")
470
+ output_midi_seq = gr.State()
471
+ output_continuation_state = gr.State([0])
472
+ midi_outputs = []
473
+ audio_outputs = []
474
+ with gr.Tabs(elem_id="output_tabs"):
475
+ for i in range(OUTPUT_BATCH_SIZE):
476
+ with gr.TabItem(f"output {i + 1}") as tab1:
477
+ output_midi_visualizer = gr.HTML(elem_id=f"midi_visualizer_container_{i}")
478
+ output_audio = gr.Audio(label="output audio", format="mp3", elem_id=f"midi_audio_{i}")
479
+ output_midi = gr.File(label="output midi", file_types=[".mid"])
480
+ midi_outputs.append(output_midi)
481
+ audio_outputs.append(output_audio)
482
+ run_event = run_btn.click(run, [input_model, tab_select, output_midi_seq, output_continuation_state,
483
+ input_continuation_select, input_instruments, input_drum_kit, input_bpm,
484
+ input_time_sig, input_key_sig, input_midi, input_midi_events,
485
+ input_reduce_cc_st, input_remap_track_channel,
486
+ input_add_default_instr, input_remove_empty_channels,
487
+ input_seed, input_seed_rand, input_gen_events, input_temp, input_top_p,
488
+ input_top_k, input_allow_cc],
489
+ [output_midi_seq, output_continuation_state, input_seed, js_msg], queue=True)
490
+ finish_run_event = run_event.then(fn=finish_run,
491
+ inputs=[input_model, output_midi_seq],
492
+ outputs=midi_outputs + [js_msg],
493
+ queue=False)
494
+ finish_run_event.then(fn=render_audio,
495
+ inputs=[input_model, output_midi_seq, input_render_audio],
496
+ outputs=audio_outputs,
497
+ queue=False)
498
+ # stop_btn.click(None, [], [], cancels=run_event,
499
+ # queue=False)
500
+ undo_btn.click(undo_continuation, [input_model, output_midi_seq, output_continuation_state],
501
+ [output_midi_seq, output_continuation_state, js_msg], queue=False)
502
+ app.queue().launch(server_port=opt.port, share=opt.share, inbrowser=True, ssr_mode=False)
503
+ thread_pool.shutdown()