Upload 4 files
Browse files- app.py +118 -0
- constants.py +119 -0
- init.py +92 -0
- utils_display.py +64 -0
app.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import json
|
4 |
+
from constants import BANNER, INTRODUCTION_TEXT, CITATION_TEXT, METRICS_TAB_TEXT, DIR_OUTPUT_REQUESTS, LEADERBOARD_CSS
|
5 |
+
from init import is_model_on_hub, upload_file, load_all_info_from_dataset_hub
|
6 |
+
from utils_display import AutoEvalColumn, fields, make_clickable_model, styled_error, styled_message
|
7 |
+
from datetime import datetime, timezone
|
8 |
+
|
9 |
+
LAST_UPDATED = "Nov 22th 2024"
|
10 |
+
|
11 |
+
column_names = {
|
12 |
+
"model": "Model",
|
13 |
+
"Average WER ⬇️": "Average WER ⬇️",
|
14 |
+
"RTFx": "RTFx ⬆️️",
|
15 |
+
"Bulgarian_female": "Bulgarian female",
|
16 |
+
"Bulgarian_male": "Bulgarian male",
|
17 |
+
"Catalan_female": "Catalan female",
|
18 |
+
"Chinese_female": "Chinese female",
|
19 |
+
"Chinese_male": "Chinese male",
|
20 |
+
"Eastern_European_male": "Eastern European male",
|
21 |
+
"European_male": "European male",
|
22 |
+
"French_female": "French female",
|
23 |
+
"Ghanain_English_female": "Ghanain English female",
|
24 |
+
"Indian_English_female": "Indian English female",
|
25 |
+
"Indian_English_male": "Indian English male",
|
26 |
+
"Indonesian_female": "Indonesian female",
|
27 |
+
"Irish_English_female": "Irish English female",
|
28 |
+
"Irish_English_male": "Irish English male",
|
29 |
+
"Israeli_male": "Israeli male",
|
30 |
+
"Italian_female": "Italian female",
|
31 |
+
"Jamaican_English_female": "Jamaican English female",
|
32 |
+
"Jamaican_English_male": "Jamaican English male",
|
33 |
+
"Kenyan_English_female": "Kenyan English female",
|
34 |
+
"Kenyan_English_male": "Kenyan English male",
|
35 |
+
"Latin_American_female": "Latin American female",
|
36 |
+
"Latin_American_male": "Latin American male",
|
37 |
+
"Lithuanian_male": "Lithuanian male",
|
38 |
+
"Mainstream_US_English_female": "Mainstream US English female",
|
39 |
+
"Mainstream_US_English_male": "Mainstream US English male",
|
40 |
+
"Nigerian_English_female": "Nigerian English female",
|
41 |
+
"Nigerian_English_male": "Nigerian English male",
|
42 |
+
"Romanian_female": "Romanian female",
|
43 |
+
"Scottish_English_male": "Scottish English male",
|
44 |
+
"Southern_British_English_male": "Southern British English male",
|
45 |
+
"Spanish_female": "Spanish female",
|
46 |
+
"Spanish_male": "Spanish male",
|
47 |
+
"Vietnamese_female": "Vietnamese female",
|
48 |
+
"Vietnamese_male": "Vietnamese male",
|
49 |
+
}
|
50 |
+
|
51 |
+
eval_queue_repo, requested_models, csv_results = load_all_info_from_dataset_hub()
|
52 |
+
|
53 |
+
if not csv_results.exists():
|
54 |
+
raise Exception(f"CSV file {csv_results} does not exist locally")
|
55 |
+
|
56 |
+
# Get csv with data and parse columns
|
57 |
+
original_df = pd.read_csv(csv_results)
|
58 |
+
|
59 |
+
# Formats the columns
|
60 |
+
def formatter(x):
|
61 |
+
if type(x) is str:
|
62 |
+
x = x
|
63 |
+
else:
|
64 |
+
x = round(x, 2)
|
65 |
+
return x
|
66 |
+
|
67 |
+
for col in original_df.columns:
|
68 |
+
if col == "model":
|
69 |
+
original_df[col] = original_df[col].apply(lambda x: x.replace(x, make_clickable_model(x)))
|
70 |
+
else:
|
71 |
+
original_df[col] = original_df[col].apply(formatter) # For numerical values
|
72 |
+
|
73 |
+
original_df.rename(columns=column_names, inplace=True)
|
74 |
+
original_df.sort_values(by='Average WER ⬇️', inplace=True)
|
75 |
+
|
76 |
+
COLS = [c.name for c in fields(AutoEvalColumn)]
|
77 |
+
TYPES = [c.type for c in fields(AutoEvalColumn)]
|
78 |
+
|
79 |
+
|
80 |
+
with gr.Blocks(css=LEADERBOARD_CSS) as demo:
|
81 |
+
# gr.HTML(BANNER, elem_id="banner")
|
82 |
+
# Write a header with the title
|
83 |
+
gr.Markdown("<h1>🤗 Open Automatic Speech Recognition on EdAcc Dataset</h1>", elem_classes="markdown-text")
|
84 |
+
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
85 |
+
|
86 |
+
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
87 |
+
with gr.TabItem("🏅 Leaderboard", elem_id="od-benchmark-tab-table", id=0):
|
88 |
+
# Add column filter dropdown
|
89 |
+
column_filter = gr.Dropdown(
|
90 |
+
choices=["All"] + [v for k,v in column_names.items() if k != "model"],
|
91 |
+
label="Filter by column",
|
92 |
+
multiselect=True,
|
93 |
+
value=["All"],
|
94 |
+
elem_id="column-filter"
|
95 |
+
)
|
96 |
+
|
97 |
+
leaderboard_table = gr.components.Dataframe(
|
98 |
+
value=original_df,
|
99 |
+
datatype=TYPES,
|
100 |
+
elem_id="leaderboard-table",
|
101 |
+
interactive=False,
|
102 |
+
visible=True,
|
103 |
+
)
|
104 |
+
|
105 |
+
# Update table columns when filter changes
|
106 |
+
def update_table(cols):
|
107 |
+
if "All" in cols:
|
108 |
+
return gr.Dataframe(value=original_df)
|
109 |
+
selected_cols = ["Model"] + cols # Always include the Model column
|
110 |
+
return gr.Dataframe(value=original_df[selected_cols])
|
111 |
+
|
112 |
+
column_filter.change(
|
113 |
+
fn=update_table,
|
114 |
+
inputs=[column_filter],
|
115 |
+
outputs=[leaderboard_table]
|
116 |
+
)
|
117 |
+
|
118 |
+
demo.launch(ssr_mode=False)
|
constants.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
|
3 |
+
# Directory where request by models are stored
|
4 |
+
DIR_OUTPUT_REQUESTS = Path("requested_models")
|
5 |
+
EVAL_REQUESTS_PATH = Path("eval_requests")
|
6 |
+
|
7 |
+
##########################
|
8 |
+
# Text definitions #
|
9 |
+
##########################
|
10 |
+
|
11 |
+
banner_url = "https://huggingface.co/datasets/reach-vb/random-images/resolve/main/asr_leaderboard.png"
|
12 |
+
BANNER = f'<div style="display: flex; justify-content: space-around;"><img src="{banner_url}" alt="Banner" style="width: 40vw; min-width: 300px; max-width: 600px;"> </div>'
|
13 |
+
|
14 |
+
TITLE = "<html> <head> <style> h1 {text-align: center;} </style> </head> <body> <h1> 🤗 Open Automatic Speech Recognition Leaderboard </b> </body> </html>"
|
15 |
+
|
16 |
+
INTRODUCTION_TEXT = "📐 Results on [EdAcc Dataset](https://huggingface.co/datasets/edinburghcstr/edacc) split by accents and gender. \
|
17 |
+
\nWe report the Average [WER](https://huggingface.co/spaces/evaluate-metric/wer) (⬇️ lower the better) and [RTFx](https://github.com/NVIDIA/DeepLearningExamples/blob/master/Kaldi/SpeechRecognition/README.md#metrics) (⬆️ higher the better)."
|
18 |
+
|
19 |
+
|
20 |
+
CITATION_TEXT = """@misc{open-asr-leaderboard,
|
21 |
+
title = {Open Automatic Speech Recognition Leaderboard},
|
22 |
+
author = {Srivastav, Vaibhav and Majumdar, Somshubra and Koluguri, Nithin and Moumen, Adel and Gandhi, Sanchit and others},
|
23 |
+
year = 2023,
|
24 |
+
publisher = {Hugging Face},
|
25 |
+
howpublished = "\\url{https://huggingface.co/spaces/hf-audio/open_asr_leaderboard}"
|
26 |
+
}
|
27 |
+
"""
|
28 |
+
|
29 |
+
METRICS_TAB_TEXT = """
|
30 |
+
Here you will find details about the speech recognition metrics and datasets reported in our leaderboard.
|
31 |
+
|
32 |
+
## Metrics
|
33 |
+
|
34 |
+
Models are evaluated jointly using the Word Error Rate (WER) and Inverse Real Time Factor (RTFx) metrics. The WER metric
|
35 |
+
is used to assess the accuracy of a system, and the RTFx the inference speed. Models are ranked in the leaderboard based
|
36 |
+
on their WER, lowest to highest.
|
37 |
+
|
38 |
+
Crucially, the WER and RTFx values are computed for the same inference run using a single script. The implication of this is two-fold:
|
39 |
+
1. The WER and RTFx values are coupled: for a given WER, one can expect to achieve the corresponding RTFx. This allows the proposer to trade-off lower WER for higher RTFx should they wish.
|
40 |
+
2. The WER and RTFx values are averaged over all audios in the benchmark (in the order of thousands of audios).
|
41 |
+
|
42 |
+
For details on reproducing the benchmark numbers, refer to the [Open ASR GitHub repository](https://github.com/huggingface/open_asr_leaderboard#evaluate-a-model).
|
43 |
+
|
44 |
+
### Word Error Rate (WER)
|
45 |
+
|
46 |
+
Word Error Rate is used to measure the **accuracy** of automatic speech recognition systems. It calculates the percentage
|
47 |
+
of words in the system's output that differ from the reference (correct) transcript. **A lower WER value indicates higher accuracy**.
|
48 |
+
|
49 |
+
Take the following example:
|
50 |
+
|
51 |
+
| Reference: | the | cat | sat | on | the | mat |
|
52 |
+
|-------------|-----|-----|---------|-----|-----|-----|
|
53 |
+
| Prediction: | the | cat | **sit** | on | the | | |
|
54 |
+
| Label: | ✅ | ✅ | S | ✅ | ✅ | D |
|
55 |
+
|
56 |
+
Here, we have:
|
57 |
+
* 1 substitution ("sit" instead of "sat")
|
58 |
+
* 0 insertions
|
59 |
+
* 1 deletion ("mat" is missing)
|
60 |
+
|
61 |
+
This gives 2 errors in total. To get our word error rate, we divide the total number of errors (substitutions + insertions + deletions) by the total number of words in our
|
62 |
+
reference (N), which for this example is 6:
|
63 |
+
|
64 |
+
```
|
65 |
+
WER = (S + I + D) / N = (1 + 0 + 1) / 6 = 0.333
|
66 |
+
```
|
67 |
+
|
68 |
+
Giving a WER of 0.33, or 33%. For a fair comparison, we calculate **zero-shot** (i.e. pre-trained models only) *normalised WER* for all the model checkpoints, meaning punctuation and casing is removed from the references and predictions. You can find the evaluation code on our [Github repository](https://github.com/huggingface/open_asr_leaderboard). To read more about how the WER is computed, refer to the [Audio Transformers Course](https://huggingface.co/learn/audio-course/chapter5/evaluation).
|
69 |
+
|
70 |
+
### Inverse Real Time Factor (RTFx)
|
71 |
+
|
72 |
+
Inverse Real Time Factor is a measure of the **latency** of automatic speech recognition systems, i.e. how long it takes an
|
73 |
+
model to process a given amount of speech. It is defined as:
|
74 |
+
```
|
75 |
+
RTFx = (number of seconds of audio inferred) / (compute time in seconds)
|
76 |
+
```
|
77 |
+
|
78 |
+
Therefore, and RTFx of 1 means a system processes speech as fast as it's spoken, while an RTFx of 2 means it takes half the time.
|
79 |
+
Thus, **a higher RTFx value indicates lower latency**.
|
80 |
+
|
81 |
+
## How to reproduce our results
|
82 |
+
|
83 |
+
The ASR Leaderboard will be a continued effort to benchmark open source/access speech recognition models where possible.
|
84 |
+
Along with the Leaderboard we're open-sourcing the codebase used for running these evaluations.
|
85 |
+
For more details head over to our repo at: https://github.com/huggingface/open_asr_leaderboard
|
86 |
+
|
87 |
+
P.S. We'd love to know which other models you'd like us to benchmark next. Contributions are more than welcome! ♥️
|
88 |
+
|
89 |
+
## Benchmark datasets
|
90 |
+
|
91 |
+
Evaluating Speech Recognition systems is a hard problem. We use the multi-dataset benchmarking strategy proposed in the
|
92 |
+
[ESB paper](https://arxiv.org/abs/2210.13352) to obtain robust evaluation scores for each model.
|
93 |
+
|
94 |
+
ESB is a benchmark for evaluating the performance of a single automatic speech recognition (ASR) system across a broad
|
95 |
+
set of speech datasets. It comprises eight English speech recognition datasets, capturing a broad range of domains,
|
96 |
+
acoustic conditions, speaker styles, and transcription requirements. As such, it gives a better indication of how
|
97 |
+
a model is likely to perform on downstream ASR compared to evaluating it on one dataset alone.
|
98 |
+
|
99 |
+
The ESB score is calculated as a macro-average of the WER scores across the ESB datasets. The models in the leaderboard
|
100 |
+
are ranked based on their average WER scores, from lowest to highest.
|
101 |
+
|
102 |
+
| Dataset | Domain | Speaking Style | Train (h) | Dev (h) | Test (h) | Transcriptions | License |
|
103 |
+
|-----------------------------------------------------------------------------------------|-----------------------------|-----------------------|-----------|---------|----------|--------------------|-----------------|
|
104 |
+
| [LibriSpeech](https://huggingface.co/datasets/librispeech_asr) | Audiobook | Narrated | 960 | 11 | 11 | Normalised | CC-BY-4.0 |
|
105 |
+
| [VoxPopuli](https://huggingface.co/datasets/facebook/voxpopuli) | European Parliament | Oratory | 523 | 5 | 5 | Punctuated | CC0 |
|
106 |
+
| [TED-LIUM](https://huggingface.co/datasets/LIUM/tedlium) | TED talks | Oratory | 454 | 2 | 3 | Normalised | CC-BY-NC-ND 3.0 |
|
107 |
+
| [GigaSpeech](https://huggingface.co/datasets/speechcolab/gigaspeech) | Audiobook, podcast, YouTube | Narrated, spontaneous | 2500 | 12 | 40 | Punctuated | apache-2.0 |
|
108 |
+
| [SPGISpeech](https://huggingface.co/datasets/kensho/spgispeech) | Financial meetings | Oratory, spontaneous | 4900 | 100 | 100 | Punctuated & Cased | User Agreement |
|
109 |
+
| [Earnings-22](https://huggingface.co/datasets/revdotcom/earnings22) | Financial meetings | Oratory, spontaneous | 105 | 5 | 5 | Punctuated & Cased | CC-BY-SA-4.0 |
|
110 |
+
| [AMI](https://huggingface.co/datasets/edinburghcstr/ami) | Meetings | Spontaneous | 78 | 9 | 9 | Punctuated & Cased | CC-BY-4.0 |
|
111 |
+
|
112 |
+
For more details on the individual datasets and how models are evaluated to give the ESB score, refer to the [ESB paper](https://arxiv.org/abs/2210.13352).
|
113 |
+
"""
|
114 |
+
|
115 |
+
LEADERBOARD_CSS = """
|
116 |
+
#leaderboard-table th .header-content {
|
117 |
+
white-space: nowrap;
|
118 |
+
}
|
119 |
+
"""
|
init.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from constants import EVAL_REQUESTS_PATH
|
3 |
+
from pathlib import Path
|
4 |
+
from huggingface_hub import HfApi, Repository
|
5 |
+
|
6 |
+
TOKEN_HUB = os.environ.get("TOKEN_HUB", None)
|
7 |
+
QUEUE_REPO = os.environ.get("QUEUE_REPO", None)
|
8 |
+
QUEUE_PATH = os.environ.get("QUEUE_PATH", None)
|
9 |
+
|
10 |
+
hf_api = HfApi(
|
11 |
+
endpoint="https://huggingface.co",
|
12 |
+
token=TOKEN_HUB,
|
13 |
+
)
|
14 |
+
|
15 |
+
def load_all_info_from_dataset_hub():
|
16 |
+
eval_queue_repo = None
|
17 |
+
requested_models = None
|
18 |
+
|
19 |
+
passed = True
|
20 |
+
if TOKEN_HUB is None:
|
21 |
+
passed = False
|
22 |
+
else:
|
23 |
+
print("Pulling evaluation requests and results.")
|
24 |
+
|
25 |
+
eval_queue_repo = Repository(
|
26 |
+
local_dir=QUEUE_PATH,
|
27 |
+
clone_from=QUEUE_REPO,
|
28 |
+
use_auth_token=TOKEN_HUB,
|
29 |
+
repo_type="dataset",
|
30 |
+
)
|
31 |
+
eval_queue_repo.git_pull()
|
32 |
+
|
33 |
+
# Local directory where dataset repo is cloned + folder with eval requests
|
34 |
+
directory = QUEUE_PATH / EVAL_REQUESTS_PATH
|
35 |
+
requested_models = get_all_requested_models(directory)
|
36 |
+
requested_models = [p.stem for p in requested_models]
|
37 |
+
# Local directory where dataset repo is cloned
|
38 |
+
csv_results = get_csv_with_results(QUEUE_PATH)
|
39 |
+
if csv_results is None:
|
40 |
+
passed = False
|
41 |
+
if not passed:
|
42 |
+
raise ValueError("No Hugging Face token provided. Skipping evaluation requests and results.")
|
43 |
+
|
44 |
+
return eval_queue_repo, requested_models, csv_results
|
45 |
+
|
46 |
+
|
47 |
+
def upload_file(requested_model_name, path_or_fileobj):
|
48 |
+
dest_repo_file = Path(EVAL_REQUESTS_PATH) / path_or_fileobj.name
|
49 |
+
dest_repo_file = str(dest_repo_file)
|
50 |
+
hf_api.upload_file(
|
51 |
+
path_or_fileobj=path_or_fileobj,
|
52 |
+
path_in_repo=str(dest_repo_file),
|
53 |
+
repo_id=QUEUE_REPO,
|
54 |
+
token=TOKEN_HUB,
|
55 |
+
repo_type="dataset",
|
56 |
+
commit_message=f"Add {requested_model_name} to eval queue")
|
57 |
+
|
58 |
+
def get_all_requested_models(directory):
|
59 |
+
directory = Path(directory)
|
60 |
+
all_requested_models = list(directory.glob("*.txt"))
|
61 |
+
return all_requested_models
|
62 |
+
|
63 |
+
def get_csv_with_results(directory):
|
64 |
+
directory = Path(directory)
|
65 |
+
all_csv_files = list(directory.glob("*.csv"))
|
66 |
+
latest = [f for f in all_csv_files if f.stem.endswith("latest")]
|
67 |
+
if len(latest) != 1:
|
68 |
+
return None
|
69 |
+
return latest[0]
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
def is_model_on_hub(model_name, revision="main") -> bool:
|
74 |
+
try:
|
75 |
+
model_name = model_name.replace(" ","")
|
76 |
+
author = model_name.split("/")[0]
|
77 |
+
model_id = model_name.split("/")[1]
|
78 |
+
if len(author) == 0 or len(model_id) == 0:
|
79 |
+
return False, "is not a valid model name. Please use the format `author/model_name`."
|
80 |
+
except Exception as e:
|
81 |
+
return False, "is not a valid model name. Please use the format `author/model_name`."
|
82 |
+
|
83 |
+
try:
|
84 |
+
models = list(hf_api.list_models(author=author, search=model_id))
|
85 |
+
matched = [model_name for m in models if m.modelId == model_name]
|
86 |
+
if len(matched) != 1:
|
87 |
+
return False, "was not found on the hub!"
|
88 |
+
else:
|
89 |
+
return True, None
|
90 |
+
except Exception as e:
|
91 |
+
print(f"Could not get the model from the hub.: {e}")
|
92 |
+
return False, "was not found on hub!"
|
utils_display.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
|
3 |
+
# These classes are for user facing column names, to avoid having to change them
|
4 |
+
# all around the code when a modif is needed
|
5 |
+
@dataclass
|
6 |
+
class ColumnContent:
|
7 |
+
name: str
|
8 |
+
type: str
|
9 |
+
|
10 |
+
def fields(raw_class):
|
11 |
+
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
|
12 |
+
|
13 |
+
@dataclass(frozen=True)
|
14 |
+
class AutoEvalColumn: # Auto evals column
|
15 |
+
model = ColumnContent("Model", "markdown")
|
16 |
+
avg_wer = ColumnContent("Average WER ⬇️", "number")
|
17 |
+
rtf = ColumnContent("RTFx ⬆️️", "number")
|
18 |
+
bulgarian_female = ColumnContent("Bulgarian female", "number")
|
19 |
+
bulgarian_male = ColumnContent("Bulgarian male", "number")
|
20 |
+
catalan_female = ColumnContent("Catalan female", "number")
|
21 |
+
chinese_female = ColumnContent("Chinese female", "number")
|
22 |
+
chinese_male = ColumnContent("Chinese male", "number")
|
23 |
+
eastern_european_male = ColumnContent("Eastern European male", "number")
|
24 |
+
european_male = ColumnContent("European male", "number")
|
25 |
+
french_female = ColumnContent("French female", "number")
|
26 |
+
ghanain_english_female = ColumnContent("Ghanain English female", "number")
|
27 |
+
indian_english_female = ColumnContent("Indian English female", "number")
|
28 |
+
indian_english_male = ColumnContent("Indian English male", "number")
|
29 |
+
indonesian_female = ColumnContent("Indonesian female", "number")
|
30 |
+
irish_english_female = ColumnContent("Irish English female", "number")
|
31 |
+
irish_english_male = ColumnContent("Irish English male", "number")
|
32 |
+
israeli_male = ColumnContent("Israeli male", "number")
|
33 |
+
italian_female = ColumnContent("Italian female", "number")
|
34 |
+
jamaican_english_female = ColumnContent("Jamaican English female", "number")
|
35 |
+
jamaican_english_male = ColumnContent("Jamaican English male", "number")
|
36 |
+
kenyan_english_female = ColumnContent("Kenyan English female", "number")
|
37 |
+
kenyan_english_male = ColumnContent("Kenyan English male", "number")
|
38 |
+
latin_american_female = ColumnContent("Latin American female", "number")
|
39 |
+
latin_american_male = ColumnContent("Latin American male", "number")
|
40 |
+
lithuanian_male = ColumnContent("Lithuanian male", "number")
|
41 |
+
mainstream_us_english_female = ColumnContent("Mainstream US English female", "number")
|
42 |
+
mainstream_us_english_male = ColumnContent("Mainstream US English male", "number")
|
43 |
+
nigerian_english_female = ColumnContent("Nigerian English female", "number")
|
44 |
+
nigerian_english_male = ColumnContent("Nigerian English male", "number")
|
45 |
+
romanian_female = ColumnContent("Romanian female", "number")
|
46 |
+
scottish_english_male = ColumnContent("Scottish English male", "number")
|
47 |
+
southern_british_english_male = ColumnContent("Southern British English male", "number")
|
48 |
+
spanish_female = ColumnContent("Spanish female", "number")
|
49 |
+
spanish_male = ColumnContent("Spanish male", "number")
|
50 |
+
vietnamese_female = ColumnContent("Vietnamese female", "number")
|
51 |
+
vietnamese_male = ColumnContent("Vietnamese male", "number")
|
52 |
+
|
53 |
+
def make_clickable_model(model_name):
|
54 |
+
link = f"https://huggingface.co/{model_name}"
|
55 |
+
return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
|
56 |
+
|
57 |
+
def styled_error(error):
|
58 |
+
return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
|
59 |
+
|
60 |
+
def styled_warning(warn):
|
61 |
+
return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"
|
62 |
+
|
63 |
+
def styled_message(message):
|
64 |
+
return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
|