File size: 11,547 Bytes
61b850a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
#pragma once
#include "llama.h"
#include "llama-arch.h"
#include "llama-hparams.h"
#include "llama-vocab.h"
#include <memory>
#include <string>
#include <unordered_map>
#include <vector>
struct llama_model_loader;
// available models
enum llm_type {
LLM_TYPE_UNKNOWN,
LLM_TYPE_14M,
LLM_TYPE_17M,
LLM_TYPE_22M,
LLM_TYPE_33M,
LLM_TYPE_60M,
LLM_TYPE_70M,
LLM_TYPE_80M,
LLM_TYPE_109M,
LLM_TYPE_137M,
LLM_TYPE_160M,
LLM_TYPE_220M,
LLM_TYPE_250M,
LLM_TYPE_270M,
LLM_TYPE_335M,
LLM_TYPE_410M,
LLM_TYPE_450M,
LLM_TYPE_770M,
LLM_TYPE_780M,
LLM_TYPE_0_5B,
LLM_TYPE_1B,
LLM_TYPE_1_3B,
LLM_TYPE_1_4B,
LLM_TYPE_1_5B,
LLM_TYPE_1_6B,
LLM_TYPE_2B,
LLM_TYPE_2_8B,
LLM_TYPE_3B,
LLM_TYPE_4B,
LLM_TYPE_6B,
LLM_TYPE_6_9B,
LLM_TYPE_7B,
LLM_TYPE_8B,
LLM_TYPE_9B,
LLM_TYPE_11B,
LLM_TYPE_12B,
LLM_TYPE_13B,
LLM_TYPE_14B,
LLM_TYPE_15B,
LLM_TYPE_16B,
LLM_TYPE_20B,
LLM_TYPE_30B,
LLM_TYPE_32B,
LLM_TYPE_34B,
LLM_TYPE_35B,
LLM_TYPE_40B,
LLM_TYPE_65B,
LLM_TYPE_70B,
LLM_TYPE_236B,
LLM_TYPE_314B,
LLM_TYPE_671B,
LLM_TYPE_SMALL,
LLM_TYPE_MEDIUM,
LLM_TYPE_LARGE,
LLM_TYPE_XL,
LLM_TYPE_A1_7B,
LLM_TYPE_A2_7B,
LLM_TYPE_8x7B,
LLM_TYPE_8x22B,
LLM_TYPE_16x12B,
LLM_TYPE_16x3_8B,
LLM_TYPE_10B_128x3_66B,
LLM_TYPE_57B_A14B,
LLM_TYPE_27B,
};
struct llama_layer_posnet {
// resnet
struct ggml_tensor * norm1 = nullptr;
struct ggml_tensor * norm1_b = nullptr;
struct ggml_tensor * conv1 = nullptr;
struct ggml_tensor * conv1_b = nullptr;
struct ggml_tensor * norm2 = nullptr;
struct ggml_tensor * norm2_b = nullptr;
struct ggml_tensor * conv2 = nullptr;
struct ggml_tensor * conv2_b = nullptr;
// attention
struct ggml_tensor * attn_norm = nullptr;
struct ggml_tensor * attn_norm_b = nullptr;
struct ggml_tensor * attn_q = nullptr;
struct ggml_tensor * attn_q_b = nullptr;
struct ggml_tensor * attn_k = nullptr;
struct ggml_tensor * attn_k_b = nullptr;
struct ggml_tensor * attn_v = nullptr;
struct ggml_tensor * attn_v_b = nullptr;
struct ggml_tensor * attn_o = nullptr;
struct ggml_tensor * attn_o_b = nullptr;
// normalize
struct ggml_tensor * norm = nullptr;
struct ggml_tensor * norm_b = nullptr;
};
struct llama_layer_convnext {
struct ggml_tensor * dw = nullptr;
struct ggml_tensor * dw_b = nullptr;
struct ggml_tensor * norm = nullptr;
struct ggml_tensor * norm_b = nullptr;
struct ggml_tensor * pw1 = nullptr;
struct ggml_tensor * pw1_b = nullptr;
struct ggml_tensor * pw2 = nullptr;
struct ggml_tensor * pw2_b = nullptr;
struct ggml_tensor * gamma = nullptr;
};
struct llama_layer {
// normalization
struct ggml_tensor * attn_norm = nullptr;
struct ggml_tensor * attn_norm_b = nullptr;
struct ggml_tensor * attn_norm_2 = nullptr;
struct ggml_tensor * attn_norm_2_b = nullptr;
struct ggml_tensor * attn_q_norm = nullptr;
struct ggml_tensor * attn_q_norm_b = nullptr;
struct ggml_tensor * attn_k_norm = nullptr;
struct ggml_tensor * attn_k_norm_b = nullptr;
struct ggml_tensor * attn_out_norm = nullptr;
struct ggml_tensor * attn_out_norm_b = nullptr;
struct ggml_tensor * attn_q_a_norm = nullptr;
struct ggml_tensor * attn_kv_a_norm = nullptr;
struct ggml_tensor * attn_sub_norm = nullptr;
struct ggml_tensor * attn_post_norm = nullptr;
struct ggml_tensor * ffn_sub_norm = nullptr;
struct ggml_tensor * attn_norm_cross = nullptr;
struct ggml_tensor * attn_norm_enc = nullptr;
// attention
struct ggml_tensor * wq = nullptr;
struct ggml_tensor * wk = nullptr;
struct ggml_tensor * wv = nullptr;
struct ggml_tensor * wo = nullptr;
struct ggml_tensor * wqkv = nullptr;
struct ggml_tensor * wq_a = nullptr;
struct ggml_tensor * wq_b = nullptr;
struct ggml_tensor * wkv_a_mqa = nullptr;
struct ggml_tensor * wkv_b = nullptr;
struct ggml_tensor * wq_cross = nullptr;
struct ggml_tensor * wk_cross = nullptr;
struct ggml_tensor * wv_cross = nullptr;
struct ggml_tensor * wo_cross = nullptr;
struct ggml_tensor * wq_enc = nullptr;
struct ggml_tensor * wk_enc = nullptr;
struct ggml_tensor * wv_enc = nullptr;
struct ggml_tensor * wo_enc = nullptr;
// attention bias
struct ggml_tensor * bq = nullptr;
struct ggml_tensor * bk = nullptr;
struct ggml_tensor * bv = nullptr;
struct ggml_tensor * bo = nullptr;
struct ggml_tensor * bqkv = nullptr;
// relative position bias
struct ggml_tensor * attn_rel_b = nullptr;
struct ggml_tensor * attn_rel_b_enc = nullptr;
struct ggml_tensor * attn_rel_b_cross = nullptr;
// normalization
struct ggml_tensor * ffn_norm = nullptr;
struct ggml_tensor * ffn_norm_b = nullptr;
struct ggml_tensor * ffn_post_norm = nullptr;
struct ggml_tensor * layer_out_norm = nullptr;
struct ggml_tensor * layer_out_norm_b = nullptr;
struct ggml_tensor * ffn_norm_exps = nullptr;
struct ggml_tensor * ffn_norm_enc = nullptr;
// ff
struct ggml_tensor * ffn_gate = nullptr; // w1
struct ggml_tensor * ffn_down = nullptr; // w2
struct ggml_tensor * ffn_up = nullptr; // w3
struct ggml_tensor * ffn_gate_enc = nullptr;
struct ggml_tensor * ffn_down_enc = nullptr;
struct ggml_tensor * ffn_up_enc = nullptr;
// ff MoE
struct ggml_tensor * ffn_gate_inp = nullptr;
struct ggml_tensor * ffn_gate_exps = nullptr;
struct ggml_tensor * ffn_down_exps = nullptr;
struct ggml_tensor * ffn_up_exps = nullptr;
// ff shared expert (shexp)
struct ggml_tensor * ffn_gate_inp_shexp = nullptr;
struct ggml_tensor * ffn_gate_shexp = nullptr;
struct ggml_tensor * ffn_down_shexp = nullptr;
struct ggml_tensor * ffn_up_shexp = nullptr;
// ff bias
struct ggml_tensor * ffn_gate_b = nullptr;
struct ggml_tensor * ffn_down_b = nullptr; // b2
struct ggml_tensor * ffn_up_b = nullptr; // b3
struct ggml_tensor * ffn_act = nullptr;
struct ggml_tensor * ffn_exp_probs_b = nullptr;
// mamba proj
struct ggml_tensor * ssm_in = nullptr;
struct ggml_tensor * ssm_x = nullptr;
struct ggml_tensor * ssm_dt = nullptr;
struct ggml_tensor * ssm_out = nullptr;
// mamba
struct ggml_tensor * ssm_conv1d = nullptr;
struct ggml_tensor * ssm_a = nullptr;
struct ggml_tensor * ssm_d = nullptr;
// mamba bias
struct ggml_tensor * ssm_conv1d_b = nullptr;
struct ggml_tensor * ssm_dt_b = nullptr;
// rwkv
struct ggml_tensor * time_mix_w1 = nullptr;
struct ggml_tensor * time_mix_w2 = nullptr;
struct ggml_tensor * time_mix_lerp_x = nullptr;
struct ggml_tensor * time_mix_lerp_w = nullptr;
struct ggml_tensor * time_mix_lerp_k = nullptr;
struct ggml_tensor * time_mix_lerp_v = nullptr;
struct ggml_tensor * time_mix_lerp_r = nullptr;
struct ggml_tensor * time_mix_lerp_g = nullptr;
struct ggml_tensor * time_mix_lerp_fused = nullptr;
struct ggml_tensor * time_mix_first = nullptr;
struct ggml_tensor * time_mix_decay = nullptr;
struct ggml_tensor * time_mix_decay_w1 = nullptr;
struct ggml_tensor * time_mix_decay_w2 = nullptr;
struct ggml_tensor * time_mix_key = nullptr;
struct ggml_tensor * time_mix_key_b = nullptr;
struct ggml_tensor * time_mix_value = nullptr;
struct ggml_tensor * time_mix_value_b = nullptr;
struct ggml_tensor * time_mix_receptance = nullptr;
struct ggml_tensor * time_mix_receptance_b = nullptr;
struct ggml_tensor * time_mix_gate = nullptr;
struct ggml_tensor * time_mix_ln = nullptr;
struct ggml_tensor * time_mix_ln_b = nullptr;
struct ggml_tensor * time_mix_output = nullptr;
struct ggml_tensor * channel_mix_lerp_k = nullptr;
struct ggml_tensor * channel_mix_lerp_r = nullptr;
struct ggml_tensor * channel_mix_key = nullptr;
struct ggml_tensor * channel_mix_receptance = nullptr;
struct ggml_tensor * channel_mix_value = nullptr;
// long rope factors
struct ggml_tensor * rope_long = nullptr;
struct ggml_tensor * rope_short = nullptr;
struct ggml_tensor * rope_freqs = nullptr;
// bitnet scale
struct ggml_tensor * wq_scale = nullptr;
struct ggml_tensor * wk_scale = nullptr;
struct ggml_tensor * wv_scale = nullptr;
struct ggml_tensor * wo_scale = nullptr;
struct ggml_tensor * ffn_gate_scale = nullptr;
struct ggml_tensor * ffn_up_scale = nullptr;
struct ggml_tensor * ffn_down_scale = nullptr;
struct llama_layer_posnet posnet;
struct llama_layer_convnext convnext;
};
struct llama_model {
llm_type type = LLM_TYPE_UNKNOWN;
llm_arch arch = LLM_ARCH_UNKNOWN;
std::string name = "n/a";
llama_hparams hparams = {};
llama_vocab vocab;
struct ggml_tensor * tok_embd = nullptr;
struct ggml_tensor * type_embd = nullptr;
struct ggml_tensor * pos_embd = nullptr;
struct ggml_tensor * tok_norm = nullptr;
struct ggml_tensor * tok_norm_b = nullptr;
struct ggml_tensor * output_norm = nullptr;
struct ggml_tensor * output_norm_b = nullptr;
struct ggml_tensor * output = nullptr;
struct ggml_tensor * output_b = nullptr;
struct ggml_tensor * output_norm_enc = nullptr;
// classifier
struct ggml_tensor * cls = nullptr;
struct ggml_tensor * cls_b = nullptr;
struct ggml_tensor * cls_out = nullptr;
struct ggml_tensor * cls_out_b = nullptr;
struct ggml_tensor * conv1d = nullptr;
struct ggml_tensor * conv1d_b = nullptr;
std::vector<llama_layer> layers;
llama_model_params params;
// gguf metadata
std::unordered_map<std::string, std::string> gguf_kv;
// list of devices used in this model
std::vector<ggml_backend_dev_t> devices;
// for quantize-stats only
std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
int64_t t_load_us = 0;
int64_t t_start_us = 0;
explicit llama_model(const struct llama_model_params & params);
~llama_model();
void load_stats (llama_model_loader & ml);
void load_arch (llama_model_loader & ml);
void load_hparams(llama_model_loader & ml);
void load_vocab (llama_model_loader & ml);
bool load_tensors(llama_model_loader & ml); // returns false if cancelled by progress_callback
std::string arch_name() const;
std::string type_name() const;
std::string desc() const;
size_t size() const;
size_t max_nodes() const;
size_t n_devices() const;
// total number of parameters in the model
uint64_t n_elements() const;
void print_info() const;
ggml_backend_dev_t dev_layer(int il) const;
ggml_backend_dev_t dev_output() const;
ggml_backend_buffer_type_t select_buft(int il) const;
const struct ggml_tensor * get_tensor(const char * name) const;
private:
struct impl;
std::unique_ptr<impl> pimpl;
};
const char * llm_type_name(llm_type type);
|