|
#pragma once |
|
|
|
#include "llama.h" |
|
|
|
#include <array> |
|
|
|
|
|
#define LLAMA_MAX_LAYERS 512 |
|
#define LLAMA_MAX_EXPERTS 256 |
|
|
|
enum llama_expert_gating_func_type { |
|
LLAMA_EXPERT_GATING_FUNC_TYPE_NONE = 0, |
|
LLAMA_EXPERT_GATING_FUNC_TYPE_SOFTMAX = 1, |
|
LLAMA_EXPERT_GATING_FUNC_TYPE_SIGMOID = 2, |
|
}; |
|
|
|
struct llama_hparams_posnet { |
|
uint32_t n_embd; |
|
uint32_t n_layer; |
|
}; |
|
|
|
struct llama_hparams_convnext { |
|
uint32_t n_embd; |
|
uint32_t n_layer; |
|
}; |
|
|
|
struct llama_hparams { |
|
bool vocab_only; |
|
bool rope_finetuned; |
|
bool use_par_res; |
|
bool swin_norm; |
|
|
|
uint32_t n_ctx_train; |
|
uint32_t n_embd; |
|
uint32_t n_embd_features = 0; |
|
uint32_t n_layer; |
|
uint32_t n_rot; |
|
uint32_t n_swa = 0; |
|
uint32_t n_embd_head_k; |
|
uint32_t n_embd_head_v; |
|
uint32_t n_expert = 0; |
|
uint32_t n_expert_used = 0; |
|
uint32_t n_rel_attn_bkts = 0; |
|
|
|
|
|
struct llama_hparams_posnet posnet; |
|
struct llama_hparams_convnext convnext; |
|
|
|
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_arr; |
|
std::array<uint32_t, LLAMA_MAX_LAYERS> n_head_kv_arr; |
|
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr; |
|
|
|
uint32_t n_layer_dense_lead = 0; |
|
uint32_t n_lora_q = 0; |
|
uint32_t n_lora_kv = 0; |
|
uint32_t n_ff_exp = 0; |
|
uint32_t n_ff_shexp = 0; |
|
uint32_t n_expert_shared = 0; |
|
uint32_t n_norm_groups = 0; |
|
|
|
float expert_weights_scale = 0.0; |
|
bool expert_weights_norm = false; |
|
uint32_t expert_gating_func = LLAMA_EXPERT_GATING_FUNC_TYPE_NONE; |
|
|
|
float f_norm_eps; |
|
float f_norm_rms_eps; |
|
float f_norm_group_eps; |
|
|
|
float f_attn_logit_softcapping = 50.0f; |
|
float f_final_logit_softcapping = 30.0f; |
|
|
|
|
|
uint32_t rescale_every_n_layers = 0; |
|
uint32_t time_mix_extra_dim = 0; |
|
uint32_t time_decay_extra_dim = 0; |
|
uint32_t wkv_head_size = 0; |
|
uint32_t token_shift_count = 2; |
|
|
|
float rope_attn_factor = 1.0f; |
|
float rope_freq_base_train; |
|
float rope_freq_scale_train; |
|
uint32_t n_ctx_orig_yarn; |
|
float rope_yarn_log_mul; |
|
|
|
std::array<int, 4> rope_sections; |
|
|
|
|
|
uint32_t ssm_d_conv = 0; |
|
uint32_t ssm_d_inner = 0; |
|
uint32_t ssm_d_state = 0; |
|
uint32_t ssm_dt_rank = 0; |
|
|
|
bool ssm_dt_b_c_rms = false; |
|
|
|
float f_clamp_kqv = 0.0f; |
|
float f_max_alibi_bias = 0.0f; |
|
float f_logit_scale = 0.0f; |
|
|
|
|
|
float f_residual_scale = 0.0f; |
|
float f_embedding_scale = 0.0f; |
|
float f_attention_scale = 0.0f; |
|
|
|
bool causal_attn = true; |
|
bool use_alibi = false; |
|
bool attn_soft_cap = false; |
|
|
|
|
|
|
|
llama_token dec_start_token_id = LLAMA_TOKEN_NULL; |
|
|
|
enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE; |
|
enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE; |
|
enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE; |
|
|
|
uint32_t n_head(uint32_t il = 0) const; |
|
|
|
uint32_t n_head_kv(uint32_t il = 0) const; |
|
|
|
uint32_t n_ff(uint32_t il = 0) const; |
|
|
|
uint32_t n_gqa(uint32_t il = 0) const; |
|
|
|
|
|
uint32_t n_embd_k_gqa(uint32_t il = 0) const; |
|
|
|
|
|
uint32_t n_embd_v_gqa(uint32_t il = 0) const; |
|
|
|
|
|
|
|
uint32_t n_embd_k_s() const; |
|
|
|
|
|
uint32_t n_embd_v_s() const; |
|
}; |
|
|
|
static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable"); |
|
|
|
|