|
import argparse |
|
import os |
|
import torch |
|
from transformers import AutoModel, AutoTokenizer |
|
|
|
ap = argparse.ArgumentParser() |
|
ap.add_argument("-m", "--model", help="Path to MiniCPM-V model") |
|
args = ap.parse_args() |
|
|
|
|
|
model = AutoModel.from_pretrained(args.model, trust_remote_code=True, local_files_only=True, torch_dtype=torch.bfloat16) |
|
checkpoint = model.state_dict() |
|
|
|
|
|
mm_tensors = [k for k, v in checkpoint.items() if k.startswith("resampler")] |
|
|
|
|
|
projector = {name: checkpoint[name].float() for name in mm_tensors} |
|
torch.save(projector, f"{args.model}/minicpmv.projector") |
|
|
|
clip_tensors = [k for k, v in checkpoint.items() if k.startswith("vpm")] |
|
if len(clip_tensors) > 0: |
|
clip = {name.replace("vpm.", ""): checkpoint[name].float() for name in clip_tensors} |
|
torch.save(clip, f"{args.model}/minicpmv.clip") |
|
|
|
|
|
if os.path.exists(f"{args.model}/added_tokens.json"): |
|
with open(f"{args.model}/added_tokens.json", "w") as f: |
|
f.write("{}\n") |
|
|
|
config = model.llm.config |
|
config.auto_map = { |
|
"AutoConfig": "configuration_minicpm.MiniCPMConfig", |
|
"AutoModel": "modeling_minicpm.MiniCPMModel", |
|
"AutoModelForCausalLM": "modeling_minicpm.MiniCPMForCausalLM", |
|
"AutoModelForSeq2SeqLM": "modeling_minicpm.MiniCPMForCausalLM", |
|
"AutoModelForSequenceClassification": "modeling_minicpm.MiniCPMForSequenceClassification" |
|
} |
|
model.llm.save_pretrained(f"{args.model}/model") |
|
tok = AutoTokenizer.from_pretrained(args.model, trust_remote_code=True) |
|
tok.save_pretrained(f"{args.model}/model") |
|
|
|
print("Done!") |
|
print(f"Now you can convert {args.model} to a regular LLaMA GGUF file.") |
|
print(f"Also, use {args.model}/minicpmv.projector to prepare a minicpmv-encoder.gguf file.") |
|
|