|
#include "llama-sampling.h" |
|
|
|
#include "llama-impl.h" |
|
#include "llama-vocab.h" |
|
#include "llama-grammar.h" |
|
|
|
#include <algorithm> |
|
#include <cassert> |
|
#include <cfloat> |
|
#include <chrono> |
|
#include <cmath> |
|
#include <cstdlib> |
|
#include <cstring> |
|
#include <ctime> |
|
#include <numeric> |
|
#include <random> |
|
#include <unordered_map> |
|
#include <stdexcept> |
|
|
|
|
|
template<typename T> |
|
struct ring_buffer { |
|
ring_buffer(size_t cap) : capacity(cap), data(cap) {} |
|
|
|
T & front() { |
|
if (sz == 0) { |
|
throw std::runtime_error("ring buffer is empty"); |
|
} |
|
return data[first]; |
|
} |
|
|
|
const T & front() const { |
|
if (sz == 0) { |
|
throw std::runtime_error("ring buffer is empty"); |
|
} |
|
return data[first]; |
|
} |
|
|
|
T & back() { |
|
if (sz == 0) { |
|
throw std::runtime_error("ring buffer is empty"); |
|
} |
|
return data[pos]; |
|
} |
|
|
|
const T & back() const { |
|
if (sz == 0) { |
|
throw std::runtime_error("ring buffer is empty"); |
|
} |
|
return data[pos]; |
|
} |
|
|
|
void push_back(const T & value) { |
|
if (capacity == 0) { |
|
throw std::runtime_error("ring buffer: capacity is zero"); |
|
} |
|
|
|
if (sz == capacity) { |
|
|
|
first = (first + 1) % capacity; |
|
} else { |
|
sz++; |
|
} |
|
data[pos] = value; |
|
pos = (pos + 1) % capacity; |
|
} |
|
|
|
T pop_front() { |
|
if (sz == 0) { |
|
throw std::runtime_error("ring buffer is empty"); |
|
} |
|
T value = data[first]; |
|
first = (first + 1) % capacity; |
|
sz--; |
|
return value; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
const T & rat(size_t i) const { |
|
if (i >= sz) { |
|
throw std::runtime_error("ring buffer: index out of bounds"); |
|
} |
|
return data[(first + sz - i - 1) % capacity]; |
|
} |
|
|
|
std::vector<T> to_vector() const { |
|
std::vector<T> result; |
|
result.reserve(sz); |
|
for (size_t i = 0; i < sz; i++) { |
|
result.push_back(data[(first + i) % capacity]); |
|
} |
|
return result; |
|
} |
|
|
|
void clear() { |
|
|
|
sz = 0; |
|
first = 0; |
|
pos = 0; |
|
} |
|
|
|
bool empty() const { |
|
return sz == 0; |
|
} |
|
|
|
size_t size() const { |
|
return sz; |
|
} |
|
|
|
size_t capacity = 0; |
|
size_t sz = 0; |
|
size_t first = 0; |
|
size_t pos = 0; |
|
|
|
std::vector<T> data; |
|
}; |
|
|
|
static int llama_sample_dist(llama_token_data_array * cur_p, std::mt19937 & rng) { |
|
|
|
#ifdef __GNUC__ |
|
#pragma GCC diagnostic push |
|
#pragma GCC diagnostic ignored "-Wunused-local-typedefs" |
|
#endif |
|
|
|
struct probs_iterator { |
|
typedef std::input_iterator_tag iterator_category; |
|
typedef float value_type; |
|
typedef float * pointer; |
|
typedef float & reference; |
|
typedef ptrdiff_t difference_type; |
|
|
|
const llama_token_data * data; |
|
|
|
bool operator==(const probs_iterator & other) const { return data == other.data; } |
|
bool operator!=(const probs_iterator & other) const { return data != other.data; } |
|
const float & operator*() const { return data->p; } |
|
probs_iterator & operator++() { ++data; return *this; } |
|
probs_iterator operator++(int) { probs_iterator tmp = *this; ++data; return tmp; } |
|
}; |
|
|
|
#ifdef __GNUC__ |
|
#pragma GCC diagnostic pop |
|
#endif |
|
|
|
std::discrete_distribution<int> dist(probs_iterator{cur_p->data}, probs_iterator{cur_p->data + cur_p->size}); |
|
|
|
return dist(rng); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static void llama_sampler_temp_impl(llama_token_data_array * cur_p, float temp) { |
|
if (temp <= 0.0f) { |
|
|
|
size_t max_i = 0; |
|
float max_l = cur_p->data[0].logit; |
|
|
|
for (size_t i = 1; i < cur_p->size; ++i) { |
|
if (cur_p->data[i ].logit > max_l) { |
|
cur_p->data[max_i].logit = -INFINITY; |
|
max_i = i; |
|
max_l = cur_p->data[i].logit; |
|
} else { |
|
cur_p->data[i].logit = -INFINITY; |
|
} |
|
} |
|
|
|
return; |
|
} |
|
|
|
for (size_t i = 0; i < cur_p->size; ++i) { |
|
cur_p->data[i].logit /= temp; |
|
} |
|
} |
|
|
|
static void llama_sampler_softmax_impl(llama_token_data_array * cur_p) { |
|
GGML_ASSERT(cur_p->size > 0); |
|
|
|
|
|
if (!cur_p->sorted) { |
|
std::sort(cur_p->data, cur_p->data + cur_p->size, [](const llama_token_data & a, const llama_token_data & b) { |
|
return a.logit > b.logit; |
|
}); |
|
cur_p->sorted = true; |
|
} |
|
|
|
float max_l = cur_p->data[0].logit; |
|
float cum_sum = 0.0f; |
|
|
|
for (size_t i = 0; i < cur_p->size; ++i) { |
|
float p = expf(cur_p->data[i].logit - max_l); |
|
cur_p->data[i].p = p; |
|
cum_sum += p; |
|
} |
|
|
|
for (size_t i = 0; i < cur_p->size; ++i) { |
|
cur_p->data[i].p /= cum_sum; |
|
} |
|
} |
|
|
|
static void llama_sampler_top_k_impl(llama_token_data_array * cur_p, int32_t k) { |
|
|
|
|
|
|
|
|
|
|
|
if (k <= 0) { |
|
k = cur_p->size; |
|
} |
|
|
|
k = std::min(k, (int) cur_p->size); |
|
|
|
|
|
if (!cur_p->sorted) { |
|
auto comp = [](const llama_token_data & a, const llama_token_data & b) { |
|
return a.logit > b.logit; |
|
}; |
|
if (k <= 128) { |
|
std::partial_sort(cur_p->data, cur_p->data + k, cur_p->data + cur_p->size, comp); |
|
} else { |
|
constexpr int nbuckets = 128; |
|
constexpr float bucket_low = -10.0f; |
|
constexpr float bucket_high = 10.0f; |
|
constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low); |
|
constexpr float bucket_inter = -bucket_low * bucket_scale; |
|
|
|
std::vector<int> bucket_idx(cur_p->size); |
|
std::vector<int> histo(nbuckets, 0); |
|
|
|
for (int i = 0; i < (int)cur_p->size; ++i) { |
|
const float val = cur_p->data[i].logit; |
|
int ib = int(bucket_scale * val + bucket_inter); |
|
ib = std::max(0, std::min(nbuckets - 1, ib)); |
|
bucket_idx[i] = ib; |
|
++histo[ib]; |
|
} |
|
int nhave = 0; |
|
int ib = nbuckets - 1; |
|
for ( ; ib >= 0; --ib) { |
|
nhave += histo[ib]; |
|
if (nhave >= k) { |
|
break; |
|
} |
|
} |
|
std::vector<llama_token_data> tmp_tokens(nhave); |
|
auto * ptr = tmp_tokens.data(); |
|
std::vector<llama_token_data*> bucket_ptrs; |
|
bucket_ptrs.reserve(nbuckets - ib); |
|
for (int j = nbuckets - 1; j >= ib; --j) { |
|
bucket_ptrs.push_back(ptr); |
|
ptr += histo[j]; |
|
} |
|
for (int i = 0; i < (int)cur_p->size; ++i) { |
|
int j = bucket_idx[i]; |
|
if (j >= ib) { |
|
*bucket_ptrs[nbuckets - 1 - j]++ = cur_p->data[i]; |
|
} |
|
} |
|
|
|
ptr = tmp_tokens.data(); |
|
int ndone = 0; |
|
for (int j = nbuckets - 1; j > ib; --j) { |
|
std::sort(ptr, ptr + histo[j], comp); |
|
ptr += histo[j]; |
|
ndone += histo[j]; |
|
} |
|
std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp); |
|
|
|
std::memcpy(cur_p->data, tmp_tokens.data(), k*sizeof(llama_token_data)); |
|
|
|
} |
|
cur_p->sorted = true; |
|
} |
|
cur_p->size = k; |
|
} |
|
|
|
static uint32_t get_rng_seed(uint32_t seed) { |
|
if (seed == LLAMA_DEFAULT_SEED) { |
|
|
|
static bool is_rd_prng = std::random_device().entropy() == 0; |
|
if (is_rd_prng) { |
|
return (uint32_t) std::chrono::system_clock::now().time_since_epoch().count(); |
|
} |
|
std::random_device rd; |
|
return rd(); |
|
} |
|
return seed; |
|
} |
|
|
|
|
|
|
|
struct llama_sampler * llama_sampler_init(const struct llama_sampler_i * iface, llama_sampler_context_t ctx) { |
|
return new llama_sampler { |
|
iface, |
|
ctx, |
|
}; |
|
} |
|
|
|
const char * llama_sampler_name(const struct llama_sampler * smpl) { |
|
if (!smpl->iface) { |
|
return "(null)"; |
|
} |
|
|
|
return smpl->iface->name(smpl); |
|
} |
|
|
|
void llama_sampler_accept(struct llama_sampler * smpl, llama_token token) { |
|
if (smpl->iface->accept) { |
|
smpl->iface->accept(smpl, token); |
|
} |
|
} |
|
|
|
void llama_sampler_apply(struct llama_sampler * smpl, struct llama_token_data_array * cur_p) { |
|
GGML_ASSERT(smpl->iface->apply); |
|
smpl->iface->apply(smpl, cur_p); |
|
} |
|
|
|
void llama_sampler_reset(struct llama_sampler * smpl) { |
|
if (smpl->iface->reset) { |
|
smpl->iface->reset(smpl); |
|
} |
|
} |
|
|
|
struct llama_sampler * llama_sampler_clone(const struct llama_sampler * smpl) { |
|
if (smpl->iface->clone) { |
|
return smpl->iface->clone(smpl); |
|
} |
|
|
|
if (smpl->ctx == nullptr) { |
|
return llama_sampler_init( |
|
smpl->iface, |
|
nullptr |
|
); |
|
} |
|
|
|
GGML_ABORT("the sampler does not support cloning"); |
|
} |
|
|
|
void llama_sampler_free(struct llama_sampler * smpl) { |
|
if (smpl == nullptr) { |
|
return; |
|
} |
|
|
|
if (smpl->iface->free) { |
|
smpl->iface->free(smpl); |
|
} |
|
|
|
delete smpl; |
|
} |
|
|
|
llama_token llama_sampler_sample(struct llama_sampler * smpl, struct llama_context * ctx, int32_t idx) { |
|
const auto * logits = llama_get_logits_ith(ctx, idx); |
|
|
|
const llama_model * model = llama_get_model(ctx); |
|
const llama_vocab * vocab = llama_model_get_vocab(model); |
|
|
|
const int n_vocab = llama_vocab_n_tokens(vocab); |
|
|
|
|
|
std::vector<llama_token_data> cur; |
|
cur.reserve(n_vocab); |
|
for (llama_token token_id = 0; token_id < n_vocab; token_id++) { |
|
cur.emplace_back(llama_token_data{token_id, logits[token_id], 0.0f}); |
|
} |
|
|
|
llama_token_data_array cur_p = { |
|
cur.data(), |
|
cur.size(), |
|
-1, |
|
false, |
|
}; |
|
|
|
llama_sampler_apply(smpl, &cur_p); |
|
|
|
GGML_ASSERT(cur_p.selected >= 0 && cur_p.selected < (int32_t) cur_p.size); |
|
|
|
auto token = cur_p.data[cur_p.selected].id; |
|
|
|
llama_sampler_accept(smpl, token); |
|
|
|
return token; |
|
} |
|
|
|
|
|
|
|
static const char * llama_sampler_chain_name(const struct llama_sampler * ) { |
|
return "chain"; |
|
} |
|
|
|
static void llama_sampler_chain_accept(struct llama_sampler * smpl, llama_token token) { |
|
auto * chain = (llama_sampler_chain *) smpl->ctx; |
|
|
|
time_meas tm(chain->t_sample_us, chain->params.no_perf); |
|
|
|
for (auto * smpl : chain->samplers) { |
|
llama_sampler_accept(smpl, token); |
|
} |
|
|
|
chain->n_sample++; |
|
} |
|
|
|
static void llama_sampler_chain_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { |
|
auto * chain = (llama_sampler_chain *) smpl->ctx; |
|
|
|
time_meas tm(chain->t_sample_us, chain->params.no_perf); |
|
|
|
for (auto * smpl : chain->samplers) { |
|
llama_sampler_apply(smpl, cur_p); |
|
} |
|
} |
|
|
|
static void llama_sampler_chain_reset(struct llama_sampler * smpl) { |
|
auto * chain = (llama_sampler_chain *) smpl->ctx; |
|
|
|
for (auto * smpl : chain->samplers) { |
|
llama_sampler_reset(smpl); |
|
} |
|
|
|
chain->t_sample_us = 0; |
|
chain->n_sample = 0; |
|
} |
|
|
|
static struct llama_sampler * llama_sampler_chain_clone(const struct llama_sampler * smpl) { |
|
const auto * chain_src = (const llama_sampler_chain *) smpl->ctx; |
|
|
|
auto * result = llama_sampler_chain_init(chain_src->params); |
|
|
|
for (auto * smpl : chain_src->samplers) { |
|
llama_sampler_chain_add(result, llama_sampler_clone(smpl)); |
|
} |
|
|
|
return result; |
|
} |
|
|
|
static void llama_sampler_chain_free(struct llama_sampler * smpl) { |
|
auto * chain = (llama_sampler_chain *) smpl->ctx; |
|
|
|
for (auto * smpl : chain->samplers) { |
|
llama_sampler_free(smpl); |
|
} |
|
|
|
delete chain; |
|
} |
|
|
|
static struct llama_sampler_i llama_sampler_chain_i = { |
|
llama_sampler_chain_name, |
|
llama_sampler_chain_accept, |
|
llama_sampler_chain_apply, |
|
llama_sampler_chain_reset, |
|
llama_sampler_chain_clone, |
|
llama_sampler_chain_free, |
|
}; |
|
|
|
struct llama_sampler * llama_sampler_chain_init(struct llama_sampler_chain_params params) { |
|
return llama_sampler_init( |
|
&llama_sampler_chain_i, |
|
new llama_sampler_chain { |
|
params, |
|
{}, |
|
0, |
|
0, |
|
} |
|
); |
|
} |
|
|
|
void llama_sampler_chain_add(struct llama_sampler * chain, struct llama_sampler * smpl) { |
|
auto * p = (llama_sampler_chain *) chain->ctx; |
|
p->samplers.push_back(smpl); |
|
} |
|
|
|
struct llama_sampler * llama_sampler_chain_get(const struct llama_sampler * chain, int32_t i) { |
|
const auto * p = (const llama_sampler_chain *) chain->ctx; |
|
|
|
if (i < 0 || (size_t) i >= p->samplers.size()) { |
|
return nullptr; |
|
} |
|
|
|
return p->samplers[i]; |
|
} |
|
|
|
struct llama_sampler * llama_sampler_chain_remove(struct llama_sampler * chain, int32_t i) { |
|
auto * p = (llama_sampler_chain *) chain->ctx; |
|
|
|
if (i < 0 || (size_t) i >= p->samplers.size()) { |
|
return nullptr; |
|
} |
|
|
|
auto * result = p->samplers[i]; |
|
p->samplers.erase(p->samplers.begin() + i); |
|
|
|
return result; |
|
} |
|
|
|
int llama_sampler_chain_n(const struct llama_sampler * chain) { |
|
const auto * p = (const llama_sampler_chain *) chain->ctx; |
|
|
|
return p->samplers.size(); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static const char * llama_sampler_greedy_name(const struct llama_sampler * ) { |
|
return "greedy"; |
|
} |
|
|
|
static void llama_sampler_greedy_apply(struct llama_sampler * , llama_token_data_array * cur_p) { |
|
cur_p->selected = 0; |
|
for (size_t i = 1; i < cur_p->size; ++i) { |
|
if (cur_p->data[i].logit > cur_p->data[cur_p->selected].logit) { |
|
cur_p->selected = i; |
|
} |
|
} |
|
} |
|
|
|
static struct llama_sampler_i llama_sampler_greedy_i = { |
|
llama_sampler_greedy_name, |
|
nullptr, |
|
llama_sampler_greedy_apply, |
|
nullptr, |
|
nullptr, |
|
nullptr, |
|
}; |
|
|
|
struct llama_sampler * llama_sampler_init_greedy() { |
|
return llama_sampler_init( |
|
&llama_sampler_greedy_i, |
|
nullptr |
|
); |
|
} |
|
|
|
|
|
|
|
struct llama_sampler_dist { |
|
const uint32_t seed; |
|
uint32_t seed_cur; |
|
|
|
std::mt19937 rng; |
|
}; |
|
|
|
static const char * llama_sampler_dist_name(const struct llama_sampler * ) { |
|
return "dist"; |
|
} |
|
|
|
static void llama_sampler_dist_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { |
|
auto * ctx = (llama_sampler_dist *) smpl->ctx; |
|
|
|
llama_sampler_softmax_impl(cur_p); |
|
|
|
cur_p->selected = llama_sample_dist(cur_p, ctx->rng); |
|
} |
|
|
|
static struct llama_sampler * llama_sampler_dist_clone(const struct llama_sampler * smpl) { |
|
const auto * ctx = (const llama_sampler_dist *) smpl->ctx; |
|
auto * result = llama_sampler_init_dist(ctx->seed); |
|
|
|
|
|
{ |
|
auto * result_ctx = (llama_sampler_dist *) result->ctx; |
|
|
|
result_ctx->rng = ctx->rng; |
|
} |
|
|
|
return result; |
|
} |
|
|
|
static void llama_sampler_dist_reset(struct llama_sampler * smpl) { |
|
auto * ctx = (llama_sampler_dist *) smpl->ctx; |
|
ctx->seed_cur = get_rng_seed(ctx->seed); |
|
ctx->rng.seed(ctx->seed_cur); |
|
} |
|
|
|
static void llama_sampler_dist_free(struct llama_sampler * smpl) { |
|
delete (llama_sampler_dist *) smpl->ctx; |
|
} |
|
|
|
static struct llama_sampler_i llama_sampler_dist_i = { |
|
llama_sampler_dist_name, |
|
nullptr, |
|
llama_sampler_dist_apply, |
|
llama_sampler_dist_reset, |
|
llama_sampler_dist_clone, |
|
llama_sampler_dist_free, |
|
}; |
|
|
|
struct llama_sampler * llama_sampler_init_dist(uint32_t seed) { |
|
auto seed_cur = get_rng_seed(seed); |
|
return llama_sampler_init( |
|
&llama_sampler_dist_i, |
|
new llama_sampler_dist { |
|
seed, |
|
seed_cur, |
|
std::mt19937(seed_cur), |
|
} |
|
); |
|
} |
|
|
|
|
|
|
|
static const char * llama_sampler_softmax_name(const struct llama_sampler * ) { |
|
return "softmax"; |
|
} |
|
|
|
static void llama_sampler_softmax_apply(struct llama_sampler * , llama_token_data_array * cur_p) { |
|
llama_sampler_softmax_impl(cur_p); |
|
} |
|
|
|
static struct llama_sampler_i llama_sampler_softmax_i = { |
|
llama_sampler_softmax_name, |
|
nullptr, |
|
llama_sampler_softmax_apply, |
|
nullptr, |
|
nullptr, |
|
nullptr, |
|
}; |
|
|
|
struct llama_sampler * llama_sampler_init_softmax() { |
|
return llama_sampler_init( |
|
&llama_sampler_softmax_i, |
|
nullptr |
|
); |
|
} |
|
|
|
|
|
|
|
struct llama_sampler_top_k { |
|
const int32_t k; |
|
}; |
|
|
|
static const char * llama_sampler_top_k_name(const struct llama_sampler * ) { |
|
return "top-k"; |
|
} |
|
|
|
static void llama_sampler_top_k_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { |
|
const auto * ctx = (llama_sampler_top_k *) smpl->ctx; |
|
llama_sampler_top_k_impl(cur_p, ctx->k); |
|
} |
|
|
|
static struct llama_sampler * llama_sampler_top_k_clone(const struct llama_sampler * smpl) { |
|
const auto * ctx = (const llama_sampler_top_k *) smpl->ctx; |
|
return llama_sampler_init_top_k(ctx->k); |
|
} |
|
|
|
static void llama_sampler_top_k_free(struct llama_sampler * smpl) { |
|
delete (llama_sampler_top_k *) smpl->ctx; |
|
} |
|
|
|
static struct llama_sampler_i llama_sampler_top_k_i = { |
|
llama_sampler_top_k_name, |
|
nullptr, |
|
llama_sampler_top_k_apply, |
|
nullptr, |
|
llama_sampler_top_k_clone, |
|
llama_sampler_top_k_free, |
|
}; |
|
|
|
struct llama_sampler * llama_sampler_init_top_k(int32_t k) { |
|
return llama_sampler_init( |
|
&llama_sampler_top_k_i, |
|
new llama_sampler_top_k { |
|
k, |
|
} |
|
); |
|
} |
|
|
|
|
|
|
|
struct llama_sampler_top_p { |
|
const float p; |
|
const size_t min_keep; |
|
}; |
|
|
|
static const char * llama_sampler_top_p_name(const struct llama_sampler * ) { |
|
return "top-p"; |
|
} |
|
|
|
static void llama_sampler_top_p_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { |
|
const auto * ctx = (llama_sampler_top_p *) smpl->ctx; |
|
|
|
if (ctx->p >= 1.0f) { |
|
return; |
|
} |
|
|
|
llama_sampler_softmax_impl(cur_p); |
|
|
|
|
|
float cum_sum = 0.0f; |
|
size_t last_idx = cur_p->size; |
|
|
|
for (size_t i = 0; i < cur_p->size; ++i) { |
|
cum_sum += cur_p->data[i].p; |
|
|
|
|
|
|
|
if (cum_sum >= ctx->p && i + 1 >= ctx->min_keep) { |
|
last_idx = i + 1; |
|
break; |
|
} |
|
} |
|
|
|
|
|
cur_p->size = last_idx; |
|
} |
|
|
|
static struct llama_sampler * llama_sampler_top_p_clone(const struct llama_sampler * smpl) { |
|
const auto * ctx = (const llama_sampler_top_p *) smpl->ctx; |
|
return llama_sampler_init_top_p(ctx->p, ctx->min_keep); |
|
} |
|
|
|
static void llama_sampler_top_p_free(struct llama_sampler * smpl) { |
|
delete (llama_sampler_top_p *) smpl->ctx; |
|
} |
|
|
|
static struct llama_sampler_i llama_sampler_top_p_i = { |
|
llama_sampler_top_p_name, |
|
nullptr, |
|
llama_sampler_top_p_apply, |
|
nullptr, |
|
llama_sampler_top_p_clone, |
|
llama_sampler_top_p_free, |
|
}; |
|
|
|
struct llama_sampler * llama_sampler_init_top_p(float p, size_t min_keep) { |
|
return llama_sampler_init( |
|
&llama_sampler_top_p_i, |
|
new llama_sampler_top_p { |
|
p, |
|
min_keep, |
|
} |
|
); |
|
} |
|
|
|
|
|
|
|
struct llama_sampler_min_p { |
|
const float p; |
|
const size_t min_keep; |
|
}; |
|
|
|
static const char * llama_sampler_min_p_name(const struct llama_sampler * ) { |
|
return "min-p"; |
|
} |
|
|
|
static void llama_sampler_min_p_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { |
|
const auto * ctx = (llama_sampler_min_p *) smpl->ctx; |
|
|
|
if (ctx->p <= 0.0f || !cur_p->size) { |
|
return; |
|
} |
|
|
|
bool min_p_applied = false; |
|
|
|
|
|
if (!cur_p->sorted) { |
|
std::vector<llama_token_data> filtered_tokens; |
|
|
|
float max_logit = -FLT_MAX; |
|
for (size_t i = 0; i < cur_p->size; ++i) { |
|
max_logit = std::max(max_logit, cur_p->data[i].logit); |
|
} |
|
const float min_logit = max_logit + logf(ctx->p); |
|
|
|
for (size_t i = 0; i < cur_p->size; ++i) { |
|
if (cur_p->data[i].logit >= min_logit) { |
|
filtered_tokens.push_back(cur_p->data[i]); |
|
} |
|
} |
|
|
|
|
|
if (filtered_tokens.size() >= ctx->min_keep) { |
|
memcpy(cur_p->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data)); |
|
cur_p->size = filtered_tokens.size(); |
|
min_p_applied = true; |
|
} |
|
} |
|
|
|
|
|
if (!min_p_applied) { |
|
|
|
if (!cur_p->sorted) { |
|
std::sort(cur_p->data, cur_p->data + cur_p->size, [](const llama_token_data & a, const llama_token_data & b) { |
|
return a.logit > b.logit; |
|
}); |
|
cur_p->sorted = true; |
|
} |
|
|
|
const float min_logit = cur_p->data[0].logit + logf(ctx->p); |
|
size_t i = 1; |
|
|
|
for (; i < cur_p->size; ++i) { |
|
if (cur_p->data[i].logit < min_logit && i >= ctx->min_keep) { |
|
break; |
|
} |
|
} |
|
|
|
|
|
cur_p->size = i; |
|
} |
|
} |
|
|
|
static struct llama_sampler * llama_sampler_min_p_clone(const struct llama_sampler * smpl) { |
|
const auto * ctx = (const llama_sampler_min_p *) smpl->ctx; |
|
return llama_sampler_init_min_p(ctx->p, ctx->min_keep); |
|
} |
|
|
|
static void llama_sampler_min_p_free(struct llama_sampler * smpl) { |
|
delete (llama_sampler_min_p *) smpl->ctx; |
|
} |
|
|
|
static struct llama_sampler_i llama_sampler_min_p_i = { |
|
llama_sampler_min_p_name, |
|
nullptr, |
|
llama_sampler_min_p_apply, |
|
nullptr, |
|
llama_sampler_min_p_clone, |
|
llama_sampler_min_p_free, |
|
}; |
|
|
|
struct llama_sampler * llama_sampler_init_min_p(float p, size_t min_keep) { |
|
return llama_sampler_init( |
|
&llama_sampler_min_p_i, |
|
new llama_sampler_min_p { |
|
p, |
|
min_keep, |
|
} |
|
); |
|
} |
|
|
|
|
|
|
|
struct llama_sampler_typical { |
|
const float p; |
|
const size_t min_keep; |
|
}; |
|
|
|
static const char * llama_sampler_typical_name(const struct llama_sampler * ) { |
|
return "typical"; |
|
} |
|
|
|
static void llama_sampler_typical_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { |
|
const auto * ctx = (llama_sampler_typical *) smpl->ctx; |
|
|
|
|
|
|
|
if (ctx->p >= 1.0f) { |
|
return; |
|
} |
|
|
|
|
|
llama_sampler_softmax_impl(cur_p); |
|
|
|
float entropy = 0.0f; |
|
for (size_t i = 0; i < cur_p->size; ++i) { |
|
entropy += -cur_p->data[i].p * logf(cur_p->data[i].p); |
|
} |
|
|
|
|
|
std::vector<float> shifted_scores; |
|
for (size_t i = 0; i < cur_p->size; ++i) { |
|
float shifted_score = fabsf(-logf(cur_p->data[i].p) - entropy); |
|
shifted_scores.push_back(shifted_score); |
|
} |
|
|
|
|
|
std::vector<size_t> indices(cur_p->size); |
|
std::iota(indices.begin(), indices.end(), 0); |
|
|
|
std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) { |
|
return shifted_scores[a] < shifted_scores[b]; |
|
}); |
|
|
|
|
|
float cum_sum = 0.0f; |
|
size_t last_idx = indices.size(); |
|
|
|
for (size_t i = 0; i < indices.size(); ++i) { |
|
size_t idx = indices[i]; |
|
cum_sum += cur_p->data[idx].p; |
|
|
|
|
|
if (cum_sum > ctx->p && i >= ctx->min_keep - 1) { |
|
last_idx = i + 1; |
|
break; |
|
} |
|
} |
|
|
|
|
|
std::vector<llama_token_data> cur_p_new; |
|
for (size_t i = 0; i < last_idx; ++i) { |
|
size_t idx = indices[i]; |
|
cur_p_new.push_back(cur_p->data[idx]); |
|
} |
|
|
|
|
|
std::copy(cur_p_new.begin(), cur_p_new.end(), cur_p->data); |
|
cur_p->size = cur_p_new.size(); |
|
cur_p->sorted = false; |
|
} |
|
|
|
static struct llama_sampler * llama_sampler_typical_clone(const struct llama_sampler * smpl) { |
|
const auto * ctx = (const llama_sampler_typical *) smpl->ctx; |
|
return llama_sampler_init_typical(ctx->p, ctx->min_keep); |
|
} |
|
|
|
static void llama_sampler_typical_free(struct llama_sampler * smpl) { |
|
delete (llama_sampler_typical *) smpl->ctx; |
|
} |
|
|
|
static struct llama_sampler_i llama_sampler_typical_i = { |
|
llama_sampler_typical_name, |
|
nullptr, |
|
llama_sampler_typical_apply, |
|
nullptr, |
|
llama_sampler_typical_clone, |
|
llama_sampler_typical_free, |
|
}; |
|
|
|
struct llama_sampler * llama_sampler_init_typical(float p, size_t min_keep) { |
|
return llama_sampler_init( |
|
&llama_sampler_typical_i, |
|
new llama_sampler_typical { |
|
p, |
|
min_keep, |
|
} |
|
); |
|
} |
|
|
|
|
|
|
|
struct llama_sampler_temp { |
|
const float temp; |
|
}; |
|
|
|
static const char * llama_sampler_temp_name(const struct llama_sampler * ) { |
|
return "temp"; |
|
} |
|
|
|
static void llama_sampler_temp_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { |
|
const auto * ctx = (llama_sampler_temp *) smpl->ctx; |
|
|
|
llama_sampler_temp_impl(cur_p, ctx->temp); |
|
} |
|
|
|
static struct llama_sampler * llama_sampler_temp_clone(const struct llama_sampler * smpl) { |
|
const auto * ctx = (const llama_sampler_temp *) smpl->ctx; |
|
return llama_sampler_init_temp(ctx->temp); |
|
} |
|
|
|
static void llama_sampler_temp_free(struct llama_sampler * smpl) { |
|
delete (llama_sampler_temp *) smpl->ctx; |
|
} |
|
|
|
static struct llama_sampler_i llama_sampler_temp_i = { |
|
llama_sampler_temp_name, |
|
nullptr, |
|
llama_sampler_temp_apply, |
|
nullptr, |
|
llama_sampler_temp_clone, |
|
llama_sampler_temp_free, |
|
}; |
|
|
|
struct llama_sampler * llama_sampler_init_temp(float temp) { |
|
return llama_sampler_init( |
|
&llama_sampler_temp_i, |
|
new llama_sampler_temp { |
|
temp, |
|
} |
|
); |
|
} |
|
|
|
|
|
|
|
struct llama_sampler_temp_ext { |
|
const float temp; |
|
const float delta; |
|
const float exponent; |
|
}; |
|
|
|
static const char * llama_sampler_temp_ext_name(const struct llama_sampler * ) { |
|
return "temp-ext"; |
|
} |
|
|
|
static void llama_sampler_temp_ext_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { |
|
const auto * ctx = (llama_sampler_temp_ext *) smpl->ctx; |
|
if (ctx->delta > 0) { |
|
const float min_temp = std::max(0.0f, ctx->temp - ctx->delta); |
|
const float max_temp = ctx->temp + ctx->delta; |
|
|
|
float exponent_val = ctx->exponent; |
|
|
|
|
|
if (cur_p->size <= 1) { |
|
return; |
|
} |
|
|
|
|
|
float max_entropy = -logf(1.0f / cur_p->size); |
|
|
|
llama_sampler_softmax_impl(cur_p); |
|
|
|
|
|
float entropy = 0.0f; |
|
for (size_t i = 0; i < cur_p->size; ++i) { |
|
float prob = cur_p->data[i].p; |
|
if (prob > 0.0f) { |
|
entropy -= prob * logf(prob); |
|
} |
|
} |
|
|
|
|
|
float normalized_entropy = entropy / max_entropy; |
|
|
|
|
|
float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val); |
|
|
|
#ifdef DEBUG |
|
LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp); |
|
LLAMA_LOG_INFO("Entropy: %f\n", entropy); |
|
LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy); |
|
LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy); |
|
LLAMA_LOG_INFO("Exponent: %f\n", exponent_val); |
|
LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp); |
|
#endif |
|
|
|
|
|
llama_sampler_temp_impl(cur_p, dyn_temp); |
|
|
|
|
|
const double max_l_double = cur_p->data[0].logit; |
|
|
|
double cum_sum_double = 0.0; |
|
for (size_t i = 0; i < cur_p->size; ++i) { |
|
double p = exp(cur_p->data[i].logit - max_l_double); |
|
cur_p->data[i].p = p; |
|
cum_sum_double += p; |
|
} |
|
|
|
for (size_t i = 0; i < cur_p->size; ++i) { |
|
cur_p->data[i].p /= cum_sum_double; |
|
} |
|
|
|
#ifdef DEBUG |
|
|
|
LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n"); |
|
for (size_t i = 0; i < 25 && i < cur_p->size; ++i) { |
|
LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, cur_p->data[i].p * 100.0f); |
|
} |
|
#endif |
|
} else { |
|
llama_sampler_temp_impl(cur_p, ctx->temp); |
|
} |
|
} |
|
|
|
static struct llama_sampler * llama_sampler_temp_ext_clone(const struct llama_sampler * smpl) { |
|
const auto * ctx = (const llama_sampler_temp_ext *) smpl->ctx; |
|
return llama_sampler_init_temp_ext(ctx->temp, ctx->delta, ctx->exponent); |
|
} |
|
|
|
static void llama_sampler_temp_ext_free(struct llama_sampler * smpl) { |
|
delete (llama_sampler_temp_ext *) smpl->ctx; |
|
} |
|
|
|
static struct llama_sampler_i llama_sampler_temp_ext_i = { |
|
llama_sampler_temp_ext_name, |
|
nullptr, |
|
llama_sampler_temp_ext_apply, |
|
nullptr, |
|
llama_sampler_temp_ext_clone, |
|
llama_sampler_temp_ext_free, |
|
}; |
|
|
|
struct llama_sampler * llama_sampler_init_temp_ext(float temp, float delta, float exponent) { |
|
return llama_sampler_init( |
|
&llama_sampler_temp_ext_i, |
|
new llama_sampler_temp_ext { |
|
temp, |
|
delta, |
|
exponent, |
|
} |
|
); |
|
} |
|
|
|
|
|
|
|
struct llama_sampler_xtc { |
|
const float probability; |
|
const float threshold; |
|
const size_t min_keep; |
|
|
|
const uint32_t seed; |
|
uint32_t seed_cur; |
|
|
|
std::mt19937 rng; |
|
}; |
|
|
|
static const char * llama_sampler_xtc_name(const struct llama_sampler * ) { |
|
return "xtc"; |
|
} |
|
|
|
static void llama_sample_xtc_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { |
|
auto * ctx = (llama_sampler_xtc *) smpl->ctx; |
|
|
|
if (ctx->probability <= 0.0f |
|
|| ctx->threshold > 0.5f |
|
|| cur_p->size < 2) { |
|
return; |
|
} |
|
|
|
std::uniform_real_distribution<float> distribution(0.0f, 1.0f); |
|
float chance = distribution(ctx->rng); |
|
if (chance > ctx->probability) return; |
|
|
|
|
|
llama_sampler_softmax_impl(cur_p); |
|
|
|
int pos_last = 0; |
|
|
|
for (size_t i = 0; i < cur_p->size; ++i) { |
|
if (cur_p->data[i].p >= ctx->threshold) { |
|
pos_last = i; |
|
} else break; |
|
} |
|
|
|
if (cur_p->size - pos_last >= ctx->min_keep && pos_last > 0) { |
|
cur_p->data += pos_last; |
|
cur_p->size -= pos_last; |
|
} |
|
} |
|
|
|
static struct llama_sampler * llama_sampler_xtc_clone(const struct llama_sampler * smpl) { |
|
const auto * ctx = (const llama_sampler_xtc *) smpl->ctx; |
|
auto * result = llama_sampler_init_xtc(ctx->probability, ctx->threshold, ctx->min_keep, ctx->seed); |
|
|
|
|
|
{ |
|
auto * result_ctx = (llama_sampler_xtc *) result->ctx; |
|
|
|
result_ctx->rng = ctx->rng; |
|
} |
|
|
|
return result; |
|
} |
|
|
|
static void llama_sampler_xtc_free(struct llama_sampler * smpl) { |
|
delete (llama_sampler_xtc *) smpl->ctx; |
|
} |
|
|
|
static void llama_sampler_xtc_reset(struct llama_sampler * smpl) { |
|
auto * ctx = (llama_sampler_xtc *) smpl->ctx; |
|
ctx->seed_cur = get_rng_seed(ctx->seed); |
|
ctx->rng.seed(ctx->seed_cur); |
|
} |
|
|
|
static struct llama_sampler_i llama_sampler_xtc_i = { |
|
llama_sampler_xtc_name, |
|
nullptr, |
|
llama_sample_xtc_apply, |
|
llama_sampler_xtc_reset, |
|
llama_sampler_xtc_clone, |
|
llama_sampler_xtc_free, |
|
}; |
|
|
|
struct llama_sampler * llama_sampler_init_xtc(float p, float t, size_t min_keep, uint32_t seed) { |
|
auto seed_cur = get_rng_seed(seed); |
|
return llama_sampler_init( |
|
&llama_sampler_xtc_i, |
|
new llama_sampler_xtc { |
|
p, |
|
t, |
|
min_keep, |
|
seed, |
|
seed_cur, |
|
std::mt19937(seed_cur), |
|
} |
|
); |
|
} |
|
|
|
|
|
|
|
struct llama_sampler_mirostat { |
|
const int32_t n_vocab; |
|
|
|
const uint32_t seed; |
|
uint32_t seed_cur; |
|
|
|
const float tau; |
|
const float eta; |
|
|
|
const int32_t m; |
|
|
|
float mu; |
|
|
|
std::mt19937 rng; |
|
}; |
|
|
|
static const char * llama_sampler_mirostat_name(const struct llama_sampler * ) { |
|
return "mirostat"; |
|
} |
|
|
|
static void llama_sampler_mirostat_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { |
|
auto * ctx = (llama_sampler_mirostat *) smpl->ctx; |
|
|
|
llama_sampler_softmax_impl(cur_p); |
|
|
|
|
|
float s_hat = 0.0; |
|
float sum_ti_bi = 0.0; |
|
float sum_ti_sq = 0.0; |
|
for (size_t i = 0; i < size_t(ctx->m - 1) && i < cur_p->size - 1; ++i) { |
|
float t_i = logf(float(i + 2) / float(i + 1)); |
|
float b_i = logf(cur_p->data[i].p / cur_p->data[i + 1].p); |
|
sum_ti_bi += t_i * b_i; |
|
sum_ti_sq += t_i * t_i; |
|
} |
|
s_hat = sum_ti_bi / sum_ti_sq; |
|
|
|
|
|
float epsilon_hat = s_hat - 1; |
|
float k = powf((epsilon_hat * powf(2, ctx->mu)) / (1 - powf(ctx->n_vocab, -epsilon_hat)), 1 / s_hat); |
|
|
|
llama_sampler_top_k_impl(cur_p, std::max(int(k), 1)); |
|
llama_sampler_softmax_impl(cur_p); |
|
|
|
const int idx = llama_sample_dist(cur_p, ctx->rng); |
|
|
|
cur_p->selected = idx; |
|
|
|
float observed_surprise = -log2f(cur_p->data[idx].p); |
|
float e = observed_surprise - ctx->tau; |
|
|
|
|
|
ctx->mu = ctx->mu - ctx->eta * e; |
|
} |
|
|
|
static struct llama_sampler * llama_sampler_mirostat_clone(const struct llama_sampler * smpl) { |
|
const auto * ctx = (const llama_sampler_mirostat *) smpl->ctx; |
|
auto * result = llama_sampler_init_mirostat(ctx->n_vocab, ctx->seed, ctx->tau, ctx->eta, ctx->m); |
|
|
|
|
|
{ |
|
auto * result_ctx = (llama_sampler_mirostat *) smpl->ctx; |
|
|
|
result_ctx->mu = ctx->mu; |
|
result_ctx->rng = ctx->rng; |
|
} |
|
|
|
return result; |
|
} |
|
|
|
static void llama_sampler_mirostat_reset(struct llama_sampler * smpl) { |
|
auto * ctx = (llama_sampler_mirostat *) smpl->ctx; |
|
ctx->mu = 2.0f*ctx->tau; |
|
ctx->seed_cur = get_rng_seed(ctx->seed); |
|
ctx->rng.seed(ctx->seed_cur); |
|
} |
|
|
|
static void llama_sampler_mirostat_free(struct llama_sampler * smpl) { |
|
delete (llama_sampler_mirostat *) smpl->ctx; |
|
} |
|
|
|
static struct llama_sampler_i llama_sampler_mirostat_i = { |
|
llama_sampler_mirostat_name, |
|
nullptr, |
|
llama_sampler_mirostat_apply, |
|
llama_sampler_mirostat_reset, |
|
llama_sampler_mirostat_clone, |
|
llama_sampler_mirostat_free, |
|
}; |
|
|
|
struct llama_sampler * llama_sampler_init_mirostat(int32_t n_vocab, uint32_t seed, float tau, float eta, int32_t m) { |
|
auto seed_cur = get_rng_seed(seed); |
|
return llama_sampler_init( |
|
&llama_sampler_mirostat_i, |
|
new llama_sampler_mirostat { |
|
n_vocab, |
|
seed, |
|
seed_cur, |
|
tau, |
|
eta, |
|
m, |
|
2.0f*tau, |
|
std::mt19937(seed_cur), |
|
} |
|
); |
|
} |
|
|
|
|
|
|
|
struct llama_sampler_mirostat_v2 { |
|
const uint32_t seed; |
|
uint32_t seed_cur; |
|
|
|
const float tau; |
|
const float eta; |
|
|
|
float mu; |
|
|
|
std::mt19937 rng; |
|
}; |
|
|
|
static const char * llama_sampler_mirostat_v2_name(const struct llama_sampler * ) { |
|
return "mirostat-v2"; |
|
} |
|
|
|
static void llama_sampler_mirostat_v2_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { |
|
auto * ctx = (llama_sampler_mirostat_v2 *) smpl->ctx; |
|
|
|
llama_sampler_softmax_impl(cur_p); |
|
|
|
|
|
cur_p->size = std::distance(cur_p->data, std::find_if(cur_p->data, cur_p->data + cur_p->size, [&](const llama_token_data & candidate) { |
|
return -log2f(candidate.p) > ctx->mu; |
|
})); |
|
|
|
if (cur_p->size == 0) { |
|
cur_p->size = 1; |
|
} |
|
|
|
|
|
llama_sampler_softmax_impl(cur_p); |
|
|
|
const int idx = llama_sample_dist(cur_p, ctx->rng); |
|
|
|
cur_p->selected = idx; |
|
|
|
float observed_surprise = -log2f(cur_p->data[idx].p); |
|
float e = observed_surprise - ctx->tau; |
|
|
|
|
|
ctx->mu = ctx->mu - ctx->eta * e; |
|
} |
|
|
|
static void llama_sampler_mirostat_v2_reset(struct llama_sampler * smpl) { |
|
auto * ctx = (llama_sampler_mirostat_v2 *) smpl->ctx; |
|
ctx->mu = 2.0f*ctx->tau; |
|
ctx->seed_cur = get_rng_seed(ctx->seed); |
|
ctx->rng.seed(ctx->seed_cur); |
|
} |
|
|
|
static struct llama_sampler * llama_sampler_mirostat_v2_clone(const struct llama_sampler * smpl) { |
|
const auto * ctx = (const llama_sampler_mirostat_v2 *) smpl->ctx; |
|
|
|
auto * result = llama_sampler_init_mirostat_v2(ctx->seed, ctx->tau, ctx->eta); |
|
|
|
|
|
{ |
|
auto * result_ctx = (llama_sampler_mirostat_v2 *) result->ctx; |
|
|
|
result_ctx->mu = ctx->mu; |
|
result_ctx->rng = ctx->rng; |
|
} |
|
|
|
return result; |
|
} |
|
|
|
static void llama_sampler_mirostat_v2_free(struct llama_sampler * smpl) { |
|
delete (llama_sampler_mirostat_v2 *) smpl->ctx; |
|
} |
|
|
|
static struct llama_sampler_i llama_sampler_mirostat_v2_i = { |
|
llama_sampler_mirostat_v2_name, |
|
nullptr, |
|
llama_sampler_mirostat_v2_apply, |
|
llama_sampler_mirostat_v2_reset, |
|
llama_sampler_mirostat_v2_clone, |
|
llama_sampler_mirostat_v2_free, |
|
}; |
|
|
|
struct llama_sampler * llama_sampler_init_mirostat_v2(uint32_t seed, float tau, float eta) { |
|
auto seed_cur = get_rng_seed(seed); |
|
return llama_sampler_init( |
|
&llama_sampler_mirostat_v2_i, |
|
new llama_sampler_mirostat_v2 { |
|
seed, |
|
seed_cur, |
|
tau, |
|
eta, |
|
2.0f*tau, |
|
std::mt19937(seed_cur), |
|
} |
|
); |
|
} |
|
|
|
|
|
|
|
struct llama_sampler_grammar { |
|
const struct llama_vocab * vocab; |
|
|
|
std::string grammar_str; |
|
std::string grammar_root; |
|
|
|
struct llama_grammar * grammar; |
|
}; |
|
|
|
static const char * llama_sampler_grammar_name(const struct llama_sampler * ) { |
|
return "grammar"; |
|
} |
|
|
|
static void llama_sampler_grammar_accept_impl(struct llama_sampler * smpl, llama_token token) { |
|
auto * ctx = (llama_sampler_grammar *) smpl->ctx; |
|
if (ctx->grammar) { |
|
llama_grammar_accept_impl(*ctx->grammar, token); |
|
} |
|
} |
|
|
|
static void llama_sampler_grammar_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { |
|
auto * ctx = (llama_sampler_grammar *) smpl->ctx; |
|
if (ctx->grammar) { |
|
llama_grammar_apply_impl(*ctx->grammar, cur_p); |
|
} |
|
} |
|
|
|
|
|
static struct llama_sampler * llama_sampler_init_grammar_impl( |
|
const struct llama_vocab * vocab, |
|
const char * grammar_str, |
|
const char * grammar_root, |
|
bool lazy, |
|
const char ** trigger_words, |
|
size_t num_trigger_words, |
|
const llama_token * trigger_tokens, |
|
size_t num_trigger_tokens); |
|
|
|
static void llama_sampler_grammar_reset(struct llama_sampler * smpl) { |
|
auto * ctx = (llama_sampler_grammar *) smpl->ctx; |
|
if (!ctx->grammar) { |
|
return; |
|
} |
|
|
|
std::vector<const char *> trigger_words; |
|
for (auto & word : ctx->grammar->trigger_words) { |
|
trigger_words.push_back(word.c_str()); |
|
} |
|
auto * grammar_new = llama_grammar_init_impl(ctx->grammar->vocab, ctx->grammar_str.c_str(), ctx->grammar_root.c_str(), |
|
ctx->grammar->lazy, trigger_words.data(), trigger_words.size(), |
|
ctx->grammar->trigger_tokens.data(), ctx->grammar->trigger_tokens.size()); |
|
|
|
llama_grammar_free_impl(ctx->grammar); |
|
ctx->grammar = grammar_new; |
|
} |
|
|
|
static struct llama_sampler * llama_sampler_grammar_clone(const struct llama_sampler * smpl) { |
|
const auto * ctx = (const llama_sampler_grammar *) smpl->ctx; |
|
|
|
auto * result = llama_sampler_init_grammar_impl(ctx->vocab, nullptr, nullptr, false, nullptr, 0, nullptr, 0); |
|
|
|
|
|
{ |
|
auto * result_ctx = (llama_sampler_grammar *) result->ctx; |
|
|
|
if (ctx->grammar) { |
|
result_ctx->grammar_str = ctx->grammar_str; |
|
result_ctx->grammar_root = ctx->grammar_root; |
|
|
|
result_ctx->grammar = llama_grammar_clone_impl(*ctx->grammar); |
|
} |
|
} |
|
|
|
return result; |
|
} |
|
|
|
static void llama_sampler_grammar_free(struct llama_sampler * smpl) { |
|
const auto * ctx = (llama_sampler_grammar *) smpl->ctx; |
|
|
|
if (ctx->grammar) { |
|
llama_grammar_free_impl(ctx->grammar); |
|
} |
|
|
|
delete ctx; |
|
} |
|
|
|
static struct llama_sampler_i llama_sampler_grammar_i = { |
|
llama_sampler_grammar_name, |
|
llama_sampler_grammar_accept_impl, |
|
llama_sampler_grammar_apply, |
|
llama_sampler_grammar_reset, |
|
llama_sampler_grammar_clone, |
|
llama_sampler_grammar_free, |
|
}; |
|
|
|
static struct llama_sampler * llama_sampler_init_grammar_impl( |
|
const struct llama_vocab * vocab, |
|
const char * grammar_str, |
|
const char * grammar_root, |
|
bool lazy, |
|
const char ** trigger_words, |
|
size_t num_trigger_words, |
|
const llama_token * trigger_tokens, |
|
size_t num_trigger_tokens) { |
|
auto * ctx = new llama_sampler_grammar; |
|
|
|
if (grammar_str != nullptr && grammar_str[0] != '\0') { |
|
*ctx = { |
|
vocab, |
|
grammar_str, |
|
grammar_root, |
|
llama_grammar_init_impl(vocab, grammar_str, grammar_root, lazy, trigger_words, num_trigger_words, trigger_tokens, num_trigger_tokens), |
|
}; |
|
} else { |
|
*ctx = { |
|
vocab, |
|
{}, |
|
{}, |
|
nullptr, |
|
}; |
|
} |
|
|
|
return llama_sampler_init( |
|
&llama_sampler_grammar_i, |
|
ctx |
|
); |
|
} |
|
|
|
struct llama_sampler * llama_sampler_init_grammar( |
|
const struct llama_vocab * vocab, |
|
const char * grammar_str, |
|
const char * grammar_root) { |
|
return llama_sampler_init_grammar_impl(vocab, grammar_str, grammar_root, false, nullptr, 0, nullptr, 0); |
|
} |
|
|
|
struct llama_sampler * llama_sampler_init_grammar_lazy( |
|
const struct llama_vocab * vocab, |
|
const char * grammar_str, |
|
const char * grammar_root, |
|
const char ** trigger_words, |
|
size_t num_trigger_words, |
|
const llama_token * trigger_tokens, |
|
size_t num_trigger_tokens) { |
|
return llama_sampler_init_grammar_impl(vocab, grammar_str, grammar_root, true, trigger_words, num_trigger_words, trigger_tokens, num_trigger_tokens); |
|
} |
|
|
|
|
|
|
|
struct llama_sampler_penalties { |
|
const int32_t penalty_last_n; |
|
const float penalty_repeat; |
|
const float penalty_freq; |
|
const float penalty_present; |
|
|
|
ring_buffer<llama_token> prev; |
|
|
|
|
|
std::unordered_map<llama_token, int> token_count; |
|
}; |
|
|
|
static const char * llama_sampler_penalties_name(const struct llama_sampler * ) { |
|
return "penalties"; |
|
} |
|
|
|
static void llama_sampler_penalties_accept(struct llama_sampler * smpl, llama_token token) { |
|
auto * ctx = (llama_sampler_penalties *) smpl->ctx; |
|
if (ctx->penalty_last_n == 0) { |
|
return; |
|
} |
|
|
|
ctx->token_count[token]++; |
|
|
|
|
|
if (ctx->prev.size() >= (size_t) ctx->penalty_last_n) { |
|
const auto old = ctx->prev.front(); |
|
|
|
ctx->token_count[old]--; |
|
if (ctx->token_count[old] == 0) { |
|
ctx->token_count.erase(old); |
|
} |
|
} |
|
|
|
ctx->prev.push_back(token); |
|
|
|
#if 0 |
|
|
|
std::unordered_map<llama_token, int> tmp; |
|
for (int i = 0; i < std::min<int>(ctx->penalty_last_n, ctx->prev.size()); ++i) { |
|
tmp[ctx->prev.rat(i)]++; |
|
} |
|
|
|
assert(ctx->token_count == tmp); |
|
#endif |
|
} |
|
|
|
static void llama_sampler_penalties_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { |
|
auto * ctx = (llama_sampler_penalties *) smpl->ctx; |
|
|
|
if ((ctx->penalty_last_n == 0) || |
|
(ctx->penalty_repeat == 1.0f && ctx->penalty_freq == 0.0f && ctx->penalty_present == 0.0f)) { |
|
return; |
|
} |
|
|
|
|
|
for (size_t i = 0; i < cur_p->size; ++i) { |
|
const auto token_iter = ctx->token_count.find(cur_p->data[i].id); |
|
if (token_iter == ctx->token_count.end()) { |
|
continue; |
|
} |
|
|
|
const int count = token_iter->second; |
|
|
|
assert(count > 0 && count <= ctx->penalty_last_n); |
|
|
|
|
|
|
|
if (cur_p->data[i].logit <= 0) { |
|
cur_p->data[i].logit *= ctx->penalty_repeat; |
|
} else { |
|
cur_p->data[i].logit /= ctx->penalty_repeat; |
|
} |
|
|
|
cur_p->data[i].logit -= float(count) * ctx->penalty_freq + float(count > 0) * ctx->penalty_present; |
|
} |
|
|
|
cur_p->sorted = false; |
|
} |
|
|
|
static void llama_sampler_penalties_reset(struct llama_sampler * smpl) { |
|
auto * ctx = (llama_sampler_penalties *) smpl->ctx; |
|
ctx->prev.clear(); |
|
ctx->token_count.clear(); |
|
} |
|
|
|
static struct llama_sampler * llama_sampler_penalties_clone(const struct llama_sampler * smpl) { |
|
const auto * ctx = (const llama_sampler_penalties *) smpl->ctx; |
|
auto * result = llama_sampler_init_penalties( |
|
ctx->penalty_last_n, |
|
ctx->penalty_repeat, |
|
ctx->penalty_freq, |
|
ctx->penalty_present); |
|
|
|
|
|
{ |
|
auto * result_ctx = (llama_sampler_penalties *) result->ctx; |
|
|
|
result_ctx->prev = ctx->prev; |
|
} |
|
|
|
return result; |
|
} |
|
|
|
static void llama_sampler_penalties_free(struct llama_sampler * smpl) { |
|
delete (llama_sampler_penalties *) smpl->ctx; |
|
} |
|
|
|
static struct llama_sampler_i llama_sampler_penalties_i = { |
|
llama_sampler_penalties_name, |
|
llama_sampler_penalties_accept, |
|
llama_sampler_penalties_apply, |
|
llama_sampler_penalties_reset, |
|
llama_sampler_penalties_clone, |
|
llama_sampler_penalties_free, |
|
}; |
|
|
|
struct llama_sampler * llama_sampler_init_penalties( |
|
int32_t penalty_last_n, |
|
float penalty_repeat, |
|
float penalty_freq, |
|
float penalty_present) { |
|
penalty_last_n = std::max(penalty_last_n, 0); |
|
|
|
return llama_sampler_init( |
|
&llama_sampler_penalties_i, |
|
new llama_sampler_penalties { |
|
penalty_last_n, |
|
penalty_repeat, |
|
penalty_freq, |
|
penalty_present, |
|
ring_buffer<llama_token>(penalty_last_n), |
|
{}, |
|
} |
|
); |
|
} |
|
|
|
|
|
|
|
struct llama_sampler_top_n_sigma { |
|
const float n; |
|
}; |
|
|
|
static const char * llama_sampler_top_n_sigma_name(const struct llama_sampler * ) { |
|
return "top-n-sigma"; |
|
} |
|
|
|
static void llama_sampler_top_n_sigma_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { |
|
const auto * ctx = (llama_sampler_top_n_sigma *) smpl->ctx; |
|
|
|
|
|
float max = cur_p->data[0].logit; |
|
float logits_sum = 0; |
|
for (size_t i = 0; i < cur_p->size; ++i) { |
|
if (cur_p->data[i].logit > max) { |
|
max = cur_p->data[i].logit; |
|
} |
|
logits_sum += cur_p->data[i].logit; |
|
} |
|
float mean = logits_sum/cur_p->size; |
|
|
|
|
|
float acc = 0; |
|
for (size_t i = 0; i < cur_p->size; ++i) { |
|
acc += pow(cur_p->data[i].logit - mean, 2); |
|
} |
|
float std = sqrt(acc/cur_p->size); |
|
|
|
|
|
for (size_t i = 0; i < cur_p->size; ++i) { |
|
if (cur_p->data[i].logit < max - (ctx->n * std)) { |
|
cur_p->data[i].logit = -INFINITY; |
|
} |
|
} |
|
llama_sampler_softmax_impl(cur_p); |
|
} |
|
|
|
static struct llama_sampler * llama_sampler_top_n_sigma_clone(const struct llama_sampler * smpl) { |
|
const auto * ctx = (const llama_sampler_top_n_sigma *) smpl->ctx; |
|
return llama_sampler_init_top_n_sigma(ctx->n); |
|
} |
|
|
|
static void llama_sampler_top_n_sigma_free(struct llama_sampler * smpl) { |
|
delete (llama_sampler_top_n_sigma *) smpl->ctx; |
|
} |
|
|
|
static struct llama_sampler_i llama_sampler_top_n_sigma_i = { |
|
llama_sampler_top_n_sigma_name, |
|
nullptr, |
|
llama_sampler_top_n_sigma_apply, |
|
nullptr, |
|
llama_sampler_top_n_sigma_clone, |
|
llama_sampler_top_n_sigma_free, |
|
}; |
|
|
|
struct llama_sampler * llama_sampler_init_top_n_sigma(float n) { |
|
return llama_sampler_init( |
|
&llama_sampler_top_n_sigma_i, |
|
new llama_sampler_top_n_sigma { |
|
n, |
|
} |
|
); |
|
} |
|
|
|
|
|
|
|
struct llama_sampler_dry { |
|
int32_t total_context_size; |
|
|
|
const float dry_multiplier; |
|
const float dry_base; |
|
const int32_t dry_allowed_length; |
|
const int32_t dry_penalty_last_n; |
|
|
|
std::unordered_multimap<llama_token, std::vector<llama_token>> dry_processed_breakers; |
|
std::vector<int> dry_repeat_count; |
|
std::unordered_map<llama_token, int> dry_max_token_repeat; |
|
ring_buffer<llama_token> last_tokens; |
|
}; |
|
|
|
|
|
static void get_overlapping_token_sequences(const llama_vocab & vocab, const std::string& str, std::unordered_multimap<llama_token, std::vector<llama_token>>& token_sequences, int max_tail_len = -1) { |
|
for (llama_token token_id = 0; token_id < (llama_token) vocab.n_tokens(); token_id++) { |
|
std::string word = vocab.detokenize({token_id}, true); |
|
if (word.find(str) != std::string::npos) { |
|
token_sequences.emplace(token_id, std::vector<llama_token>()); |
|
} else { |
|
size_t word_len = word.size(); |
|
size_t str_len = str.size(); |
|
size_t pos = -1; |
|
while ((pos = word.find(str[0], pos + 1)) != std::string::npos) { |
|
bool match = true; |
|
size_t i; |
|
for (i = 1; i < str_len && i + pos < word_len; ++i) { |
|
if (word[pos + i] != str[i]) { |
|
match = false; |
|
break; |
|
} |
|
} |
|
if (match) { |
|
std::vector<llama_token> tokenization = vocab.tokenize(str.substr(i), false, false); |
|
if (max_tail_len >= 0 && tokenization.size() > (size_t)max_tail_len) { |
|
tokenization.resize(max_tail_len); |
|
} |
|
|
|
|
|
auto its = token_sequences.equal_range(token_id); |
|
bool found = false; |
|
for (auto it = its.first; it != its.second; ++it) { |
|
if (tokenization == it->second) { |
|
found = true; |
|
break; |
|
} |
|
} |
|
if (!found) { |
|
token_sequences.emplace(token_id, tokenization); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
static const char * llama_sampler_dry_name(const struct llama_sampler * ) { |
|
return "dry"; |
|
} |
|
|
|
static void llama_sampler_dry_accept(struct llama_sampler * smpl, llama_token token) { |
|
auto * ctx = (llama_sampler_dry *) smpl->ctx; |
|
if (ctx->dry_multiplier == 0.0f || ctx->dry_base < 1.0f || ctx->dry_penalty_last_n == 0) { |
|
return; |
|
} |
|
|
|
ctx->last_tokens.push_back(token); |
|
} |
|
|
|
|
|
static void llama_sampler_dry_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { |
|
auto * ctx = (llama_sampler_dry *) smpl->ctx; |
|
|
|
if (ctx->dry_multiplier == 0.0f || ctx->dry_base < 1.0f || ctx->dry_penalty_last_n == 0) { |
|
return; |
|
} |
|
|
|
int32_t effective_dry_penalty_last_n = (ctx->dry_penalty_last_n == -1) ? ctx->total_context_size : std::max(ctx->dry_penalty_last_n, 0); |
|
int last_n_repeat = std::min(std::min((int)ctx->last_tokens.size(), effective_dry_penalty_last_n), ctx->total_context_size); |
|
|
|
if (last_n_repeat <= ctx->dry_allowed_length) { |
|
return; |
|
} |
|
|
|
ctx->dry_repeat_count.assign(last_n_repeat, 0); |
|
ctx->dry_max_token_repeat.clear(); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int rep_limit = last_n_repeat; |
|
for (int i = 0; i < last_n_repeat; ++i) { |
|
llama_token token = ctx->last_tokens.rat(i); |
|
auto its = ctx->dry_processed_breakers.equal_range(token); |
|
if (its.first == ctx->dry_processed_breakers.end()) { |
|
continue; |
|
} |
|
int longest_match = -1; |
|
for (auto it = its.first; it != its.second; ++it) { |
|
|
|
|
|
|
|
|
|
int seq_len = (int)it->second.size(); |
|
if (seq_len > longest_match && seq_len <= (int)i) { |
|
bool match = true; |
|
for (int offset = 0; offset < seq_len; ++offset) { |
|
|
|
if (it->second[offset] != ctx->last_tokens.rat(i - offset - 1)) { |
|
match = false; |
|
break; |
|
} |
|
} |
|
if (match) { |
|
longest_match = seq_len; |
|
} |
|
} |
|
} |
|
if (longest_match >= 0) { |
|
|
|
|
|
rep_limit = i - longest_match; |
|
break; |
|
} |
|
} |
|
if (rep_limit < ctx->dry_allowed_length) { |
|
return; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
{ |
|
const int last = last_n_repeat - 1; |
|
int rt = 0, lt = 0; |
|
|
|
for (int k = 1; k < last_n_repeat; ++k) { |
|
if (k > rt) { |
|
|
|
int n = 0; |
|
while (n + k < last_n_repeat && ctx->last_tokens.rat(n) == ctx->last_tokens.rat(n+k)) { |
|
++n; |
|
} |
|
ctx->dry_repeat_count[last - k] = std::min(n, rep_limit); |
|
if (n > 0) { |
|
lt = k; |
|
rt = k + n - 1; |
|
} |
|
} else { |
|
|
|
|
|
int p = k - lt; |
|
int right_part_len = rt - k + 1; |
|
|
|
if (ctx->dry_repeat_count[last - p] < right_part_len) { |
|
int n = std::min(ctx->dry_repeat_count[last - p], rep_limit); |
|
ctx->dry_repeat_count[last - k] = n; |
|
} else { |
|
int i = rt + 1; |
|
while (i < last_n_repeat && ctx->last_tokens.rat(i) == ctx->last_tokens.rat(i - k)) { |
|
i += 1; |
|
} |
|
|
|
int n = std::min(i - k, rep_limit); |
|
ctx->dry_repeat_count[last - k] = n; |
|
lt = k; |
|
rt = i - 1; |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for (int i = 0; i < last_n_repeat - 1; ++i) { |
|
int repeat_len = ctx->dry_repeat_count[i]; |
|
if (repeat_len >= ctx->dry_allowed_length) { |
|
|
|
|
|
|
|
llama_token token = ctx->last_tokens.rat(last_n_repeat - 2 - i); |
|
|
|
const auto& it = ctx->dry_max_token_repeat.find(token); |
|
if (it == ctx->dry_max_token_repeat.end() || it->second < repeat_len) { |
|
ctx->dry_max_token_repeat[token] = repeat_len; |
|
} |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
const float FLOAT_MAX_LOG = 88.7228391f; |
|
int max_exponent = 0; |
|
if (ctx->dry_base > 1.000001f) { |
|
max_exponent = FLOAT_MAX_LOG / std::log(ctx->dry_base); |
|
} |
|
|
|
for (size_t i = 0; i < cur_p->size; ++i) { |
|
const auto& af_kvp = ctx->dry_max_token_repeat.find(cur_p->data[i].id); |
|
if (af_kvp != ctx->dry_max_token_repeat.end()) { |
|
|
|
auto range = ctx->dry_processed_breakers.equal_range(cur_p->data[i].id); |
|
bool is_single_token_breaker = false; |
|
|
|
for (auto it = range.first; it != range.second; ++it) { |
|
if (it->second.empty()) { |
|
is_single_token_breaker = true; |
|
break; |
|
} |
|
} |
|
|
|
|
|
if (!is_single_token_breaker) { |
|
int repeat_exp = af_kvp->second - ctx->dry_allowed_length; |
|
if (max_exponent > 0 && repeat_exp > max_exponent) { |
|
repeat_exp = max_exponent; |
|
} |
|
float penalty = ctx->dry_multiplier * std::pow(ctx->dry_base, repeat_exp); |
|
cur_p->data[i].logit -= penalty; |
|
} |
|
} |
|
} |
|
|
|
cur_p->sorted = false; |
|
} |
|
|
|
static void llama_sampler_dry_reset(struct llama_sampler * smpl) { |
|
auto * ctx = (llama_sampler_dry *) smpl->ctx; |
|
ctx->last_tokens.clear(); |
|
ctx->dry_repeat_count.clear(); |
|
ctx->dry_max_token_repeat.clear(); |
|
} |
|
|
|
static struct llama_sampler * llama_sampler_dry_clone(const struct llama_sampler * smpl) { |
|
const auto * ctx = (llama_sampler_dry *) smpl->ctx; |
|
|
|
llama_vocab dummy_vocab; |
|
|
|
|
|
auto * result = llama_sampler_init_dry(&dummy_vocab, ctx->total_context_size, ctx->dry_multiplier, ctx->dry_base, ctx->dry_allowed_length, ctx->dry_penalty_last_n, NULL, 0); |
|
|
|
|
|
{ |
|
auto * result_ctx = (llama_sampler_dry *) result->ctx; |
|
result_ctx->dry_processed_breakers = ctx->dry_processed_breakers; |
|
result_ctx->dry_repeat_count = ctx->dry_repeat_count; |
|
result_ctx->dry_max_token_repeat = ctx->dry_max_token_repeat; |
|
result_ctx->last_tokens = ctx->last_tokens; |
|
} |
|
|
|
return result; |
|
} |
|
|
|
static void llama_sampler_dry_free(struct llama_sampler * smpl) { |
|
delete (llama_sampler_dry *) smpl->ctx; |
|
} |
|
|
|
static struct llama_sampler_i llama_sampler_dry_i = { |
|
llama_sampler_dry_name, |
|
llama_sampler_dry_accept, |
|
llama_sampler_dry_apply, |
|
llama_sampler_dry_reset, |
|
llama_sampler_dry_clone, |
|
llama_sampler_dry_free, |
|
}; |
|
|
|
struct llama_sampler * llama_sampler_init_dry(const struct llama_vocab * vocab, int32_t context_size, float dry_multiplier, float dry_base, int32_t dry_allowed_length, int32_t dry_penalty_last_n, const char** seq_breakers, size_t num_breakers) { |
|
int32_t effective_dry_penalty_last_n = (dry_penalty_last_n == -1) ? context_size : std::max(dry_penalty_last_n, 0); |
|
std::unordered_multimap<llama_token, std::vector<llama_token>> processed_breakers; |
|
const int MAX_CHAR_LEN = 40; |
|
const int MAX_SEQ_LEN = 20; |
|
|
|
const bool dry_enabled = (dry_multiplier != 0.0f && dry_base >= 1.0f && dry_penalty_last_n != 0); |
|
|
|
if (dry_enabled && seq_breakers != nullptr && num_breakers > 0) { |
|
|
|
for (size_t i = 0; i < num_breakers; ++i) { |
|
if (seq_breakers[i] == nullptr || std::strlen(seq_breakers[i]) == 0) { |
|
LLAMA_LOG_WARN("skipping null or empty DRY sequence breaker at index %zu\n", i); |
|
continue; |
|
} |
|
|
|
std::string sequence_break(seq_breakers[i]); |
|
if (sequence_break.empty()) { |
|
LLAMA_LOG_WARN("skipping empty DRY sequence breaker\n"); |
|
continue; |
|
} |
|
|
|
if (sequence_break.size() > MAX_CHAR_LEN) { |
|
LLAMA_LOG_WARN("truncating DRY sequence breaker to %d characters\n", MAX_CHAR_LEN); |
|
sequence_break.resize(MAX_CHAR_LEN); |
|
} |
|
|
|
get_overlapping_token_sequences(*vocab, sequence_break, processed_breakers, MAX_SEQ_LEN); |
|
} |
|
} |
|
|
|
return llama_sampler_init( |
|
&llama_sampler_dry_i, |
|
new llama_sampler_dry { |
|
context_size, |
|
dry_multiplier, |
|
dry_base, |
|
dry_allowed_length, |
|
dry_penalty_last_n, |
|
std::move(processed_breakers), |
|
dry_enabled ? std::vector<int>(effective_dry_penalty_last_n, 0) : std::vector<int>{}, |
|
{}, |
|
dry_enabled ? ring_buffer<llama_token>(effective_dry_penalty_last_n) : ring_buffer<llama_token>(0), |
|
} |
|
); |
|
} |
|
|
|
|
|
struct llama_sampler * llama_sampler_init_dry_testing(int32_t context_size, float dry_multiplier, float dry_base, int32_t dry_allowed_length, int32_t dry_penalty_last_n, const std::vector<std::vector<llama_token>>& seq_breakers) { |
|
llama_vocab dummy_vocab; |
|
auto * result = llama_sampler_init_dry(&dummy_vocab, context_size, dry_multiplier, dry_base, dry_allowed_length, dry_penalty_last_n, NULL, 0); |
|
auto * ctx = (llama_sampler_dry *) result->ctx; |
|
|
|
|
|
ctx->dry_processed_breakers.clear(); |
|
if (seq_breakers.empty()) { |
|
LLAMA_LOG_WARN("empty DRY sequence breakers list in llama_sampler_init_dry_testing\n"); |
|
} else { |
|
for (const auto& breaker : seq_breakers) { |
|
if (breaker.empty()) { |
|
LLAMA_LOG_WARN("skipping DRY empty sequence breaker\n"); |
|
continue; |
|
} |
|
llama_token head_token = breaker[0]; |
|
std::vector<llama_token> tail_tokens(breaker.begin() + 1, breaker.end()); |
|
ctx->dry_processed_breakers.emplace(head_token, std::move(tail_tokens)); |
|
} |
|
|
|
if (ctx->dry_processed_breakers.empty()) { |
|
LLAMA_LOG_WARN("no valid DRY sequence breakers processed in llama_sampler_init_dry_testing\n"); |
|
} |
|
} |
|
|
|
return result; |
|
} |
|
|
|
|
|
|
|
struct llama_sampler_logit_bias { |
|
const int32_t n_vocab; |
|
|
|
const std::vector<llama_logit_bias> logit_bias; |
|
|
|
std::vector<llama_logit_bias> to_search; |
|
}; |
|
|
|
static const char * llama_sampler_logit_bias_name(const struct llama_sampler * ) { |
|
return "logit-bias"; |
|
} |
|
|
|
static void llama_sampler_logit_bias_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { |
|
auto * ctx = (llama_sampler_logit_bias *) smpl->ctx; |
|
|
|
if (ctx->logit_bias.empty()) { |
|
return; |
|
} |
|
|
|
ctx->to_search.clear(); |
|
|
|
|
|
for (const auto & lb : ctx->logit_bias) { |
|
if (lb.token >= 0 && cur_p->size > (size_t) lb.token && cur_p->data[lb.token].id == lb.token) { |
|
cur_p->data[lb.token].logit += lb.bias; |
|
} else { |
|
ctx->to_search.push_back(lb); |
|
} |
|
} |
|
|
|
if (ctx->to_search.empty()) { |
|
return; |
|
} |
|
|
|
|
|
for (size_t i = 0; i < cur_p->size; ++i) { |
|
for (const auto & lb : ctx->to_search) { |
|
if (cur_p->data[i].id == lb.token) { |
|
cur_p->data[i].logit += lb.bias; |
|
break; |
|
} |
|
} |
|
} |
|
} |
|
|
|
static struct llama_sampler * llama_sampler_logit_bias_clone(const struct llama_sampler * smpl) { |
|
const auto * ctx = (const llama_sampler_logit_bias *) smpl->ctx; |
|
return llama_sampler_init_logit_bias(ctx->n_vocab, ctx->logit_bias.size(), ctx->logit_bias.data()); |
|
} |
|
|
|
static void llama_sampler_logit_bias_free(struct llama_sampler * smpl) { |
|
delete (llama_sampler_logit_bias *) smpl->ctx; |
|
} |
|
|
|
static struct llama_sampler_i llama_sampler_logit_bias_i = { |
|
llama_sampler_logit_bias_name, |
|
nullptr, |
|
llama_sampler_logit_bias_apply, |
|
nullptr, |
|
llama_sampler_logit_bias_clone, |
|
llama_sampler_logit_bias_free, |
|
}; |
|
|
|
struct llama_sampler * llama_sampler_init_logit_bias( |
|
int32_t n_vocab, |
|
int32_t n_logit_bias, |
|
const llama_logit_bias * logit_bias) { |
|
return llama_sampler_init( |
|
&llama_sampler_logit_bias_i, |
|
new llama_sampler_logit_bias { |
|
n_vocab, |
|
std::vector<llama_logit_bias>(logit_bias, logit_bias + n_logit_bias), |
|
{}, |
|
} |
|
); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
struct llama_sampler_infill { |
|
const struct llama_vocab * vocab; |
|
|
|
std::vector<char> buf0; |
|
std::vector<char> buf1; |
|
}; |
|
|
|
static const char * llama_sampler_infill_name(const struct llama_sampler * ) { |
|
return "infill"; |
|
} |
|
|
|
static void llama_sampler_infill_apply(struct llama_sampler * smpl, llama_token_data_array * cur_p) { |
|
auto * ctx = (llama_sampler_infill *) smpl->ctx; |
|
|
|
llama_sampler_softmax_impl(cur_p); |
|
|
|
#if defined(GGML_DEBUG_SAMPLER_INFILL) |
|
#define LOG_DBG_CUR LLAMA_LOG_DEBUG |
|
#else |
|
#define LOG_DBG_CUR(...) |
|
#endif |
|
|
|
for (size_t i = 0; i < cur_p->size; ++i) { |
|
LOG_DBG_CUR("%s: cur_p[%3zu] = { id: %6d, p: %.6f, logit: %6.3f }\n", __func__, i, cur_p->data[i].id, cur_p->data[i].p, cur_p->data[i].logit); |
|
} |
|
|
|
float p_txt_sum = 0.0f; |
|
float p_eog_sum = 0.0f; |
|
|
|
for (size_t i = 0; i < cur_p->size; ++i) { |
|
if (ctx->vocab->is_eog(cur_p->data[i].id)) { |
|
p_eog_sum += cur_p->data[i].p; |
|
} else { |
|
p_txt_sum += cur_p->data[i].p; |
|
} |
|
} |
|
|
|
const float rat = p_eog_sum == 0.0 ? INFINITY : p_txt_sum / p_eog_sum; GGML_UNUSED(rat); |
|
|
|
LOG_DBG_CUR("%s: p_txt_sum = %.2f, p_eog_sum = %.2f, rat = %.2f, n = %zu\n", __func__, p_txt_sum, p_eog_sum, rat, cur_p->size); |
|
|
|
if (3*p_eog_sum*cur_p->size > p_txt_sum) { |
|
LOG_DBG_CUR("%s: the ratio p_txt/p_eog = %.2f is too low -> sampling EOG\n", __func__, p_txt_sum/p_eog_sum); |
|
|
|
|
|
const auto size_org = cur_p->size; |
|
|
|
cur_p->size = 0; |
|
|
|
float p_sum = 0.0f; |
|
|
|
for (size_t i = 0; i < size_org; ++i) { |
|
if (ctx->vocab->is_eog(cur_p->data[i].id)) { |
|
p_sum += cur_p->data[i].p; |
|
|
|
cur_p->data[cur_p->size++] = cur_p->data[i]; |
|
} |
|
} |
|
|
|
|
|
for (size_t i = 0; i < cur_p->size; ++i) { |
|
cur_p->data[i].p /= p_sum; |
|
} |
|
|
|
return; |
|
} |
|
|
|
size_t n_combined = 0; GGML_UNUSED(n_combined); |
|
|
|
|
|
for (size_t i0 = 0; i0 < cur_p->size; ++i0) { |
|
for (size_t i1 = 0; i1 < cur_p->size; ++i1) { |
|
if (cur_p->data[i0].logit == -INFINITY) { |
|
break; |
|
} |
|
|
|
if (i0 == i1 || cur_p->data[i1].logit == -INFINITY) { |
|
continue; |
|
} |
|
|
|
int len0 = ctx->vocab->token_to_piece(cur_p->data[i0].id, ctx->buf0.data(), ctx->buf0.size(), 0, false); |
|
if (len0 < 0) { |
|
ctx->buf0.resize(len0); |
|
len0 = ctx->vocab->token_to_piece(cur_p->data[i0].id, ctx->buf0.data(), ctx->buf0.size(), 0, false); |
|
assert(len0 > 0); |
|
} |
|
|
|
int len1 = ctx->vocab->token_to_piece(cur_p->data[i1].id, ctx->buf1.data(), ctx->buf1.size(), 0, false); |
|
if (len1 < 0) { |
|
ctx->buf1.resize(len1); |
|
len1 = ctx->vocab->token_to_piece(cur_p->data[i1].id, ctx->buf1.data(), ctx->buf1.size(), 0, false); |
|
assert(len1 > 0); |
|
} |
|
|
|
|
|
if (len0 > 0 && len0 <= len1 && memcmp(ctx->buf0.data(), ctx->buf1.data(), len0) == 0) { |
|
int dst = i0; |
|
int src = i1; |
|
|
|
|
|
if (cur_p->data[i1].p > cur_p->data[i0].p) { |
|
std::swap(dst, src); |
|
} |
|
|
|
cur_p->data[dst].p += cur_p->data[src].p; |
|
cur_p->data[src].logit = -INFINITY; |
|
cur_p->data[src].p = 0.0f; |
|
|
|
n_combined++; |
|
} |
|
} |
|
} |
|
|
|
size_t n_non_eog = 0; |
|
|
|
size_t size_org = cur_p->size; |
|
|
|
float p_sum = 0.0f; |
|
float thold = 0.2f; |
|
|
|
cur_p->size = 0; |
|
|
|
LOG_DBG_CUR("%s: n_combined = %zu, applying thold = %.3f\n", __func__, n_combined, thold); |
|
|
|
for (size_t i = 0; i < size_org; ++i) { |
|
const bool is_eog = ctx->vocab->is_eog(cur_p->data[i].id); |
|
|
|
if (cur_p->data[i].p < thold && !is_eog) { |
|
continue; |
|
} |
|
|
|
if (!is_eog) { |
|
++n_non_eog; |
|
} |
|
|
|
p_sum += cur_p->data[i].p; |
|
|
|
|
|
cur_p->data[cur_p->size++] = cur_p->data[i]; |
|
} |
|
|
|
LOG_DBG_CUR("%s: n_non_eog = %zu\n", __func__, n_non_eog); |
|
|
|
|
|
if (n_non_eog == 0) { |
|
cur_p->size = 1; |
|
cur_p->data[0].id = ctx->vocab->token_eot(); |
|
cur_p->data[0].logit = 1.0f; |
|
|
|
return; |
|
} |
|
|
|
|
|
for (size_t i = 0; i < cur_p->size; ++i) { |
|
cur_p->data[i].p /= p_sum; |
|
|
|
LOG_DBG_CUR("%s: cur_p[%3zu] = { id: %6d, p: %.6f, logit: %6.3f }\n", __func__, i, cur_p->data[i].id, cur_p->data[i].p, cur_p->data[i].logit); |
|
} |
|
|
|
size_org = cur_p->size; |
|
p_sum = 0.0f; |
|
thold = 1.0/(n_non_eog + 1); |
|
|
|
cur_p->size = 0; |
|
|
|
LOG_DBG_CUR("%s: applying thold = %.3f\n", __func__, thold); |
|
|
|
for (size_t i = 0; i < size_org; ++i) { |
|
const bool is_eog = ctx->vocab->is_eog(cur_p->data[i].id); |
|
|
|
if (cur_p->data[i].p < thold && !is_eog) { |
|
continue; |
|
} |
|
|
|
p_sum += cur_p->data[i].p; |
|
|
|
cur_p->data[cur_p->size++] = cur_p->data[i]; |
|
} |
|
|
|
|
|
for (size_t i = 0; i < cur_p->size; ++i) { |
|
cur_p->data[i].p /= p_sum; |
|
|
|
LOG_DBG_CUR("%s: cur_p[%3zu] = { id: %6d, p: %.6f, logit: %6.3f }\n", __func__, i, cur_p->data[i].id, cur_p->data[i].p, cur_p->data[i].logit); |
|
} |
|
|
|
#undef LOG_DBG_CUR |
|
} |
|
|
|
static struct llama_sampler * llama_sampler_infill_clone(const struct llama_sampler * smpl) { |
|
const auto * ctx = (const llama_sampler_infill *) smpl->ctx; |
|
return llama_sampler_init_infill(ctx->vocab); |
|
} |
|
|
|
static void llama_sampler_infill_free(struct llama_sampler * smpl) { |
|
delete (llama_sampler_infill *) smpl->ctx; |
|
} |
|
|
|
static struct llama_sampler_i llama_sampler_infill_i = { |
|
llama_sampler_infill_name, |
|
nullptr, |
|
llama_sampler_infill_apply, |
|
nullptr, |
|
llama_sampler_infill_clone, |
|
llama_sampler_infill_free, |
|
}; |
|
|
|
struct llama_sampler * llama_sampler_init_infill(const struct llama_vocab * vocab) { |
|
return llama_sampler_init( |
|
&llama_sampler_infill_i, |
|
new llama_sampler_infill { |
|
vocab, |
|
std::vector<char>(512), |
|
std::vector<char>(512), |
|
} |
|
); |
|
} |
|
|
|
|
|
|
|
uint32_t llama_sampler_get_seed(const struct llama_sampler * smpl) { |
|
if (smpl->iface == &llama_sampler_dist_i) { |
|
return ((const llama_sampler_dist *) smpl->ctx)->seed_cur; |
|
} |
|
|
|
if (smpl->iface == &llama_sampler_mirostat_i) { |
|
return ((const llama_sampler_mirostat *) smpl->ctx)->seed_cur; |
|
} |
|
|
|
if (smpl->iface == &llama_sampler_mirostat_v2_i) { |
|
return ((const llama_sampler_mirostat_v2 *) smpl->ctx)->seed_cur; |
|
} |
|
|
|
if (smpl->iface == &llama_sampler_chain_i) { |
|
const auto * ctx = (const llama_sampler_chain *) smpl->ctx; |
|
for (auto it = ctx->samplers.rbegin(); it != ctx->samplers.rend(); ++it) { |
|
const uint32_t seed = llama_sampler_get_seed(*it); |
|
if (seed != LLAMA_DEFAULT_SEED) { |
|
return seed; |
|
} |
|
} |
|
} |
|
|
|
return LLAMA_DEFAULT_SEED; |
|
} |
|
|
|
|
|
|
|
struct llama_perf_sampler_data llama_perf_sampler(const struct llama_sampler * chain) { |
|
struct llama_perf_sampler_data data = {}; |
|
|
|
if (chain == nullptr || chain->iface != &llama_sampler_chain_i) { |
|
GGML_ABORT("%s: invalid sampler passed - requires a sampler created with llama_sampler_chain_init()\n", __func__); |
|
} |
|
|
|
const auto * ctx = (const struct llama_sampler_chain *) chain->ctx; |
|
|
|
data.t_sample_ms = 1e-3 * ctx->t_sample_us; |
|
data.n_sample = std::max(0, ctx->n_sample); |
|
|
|
return data; |
|
} |
|
|
|
void llama_perf_sampler_print(const struct llama_sampler * chain) { |
|
const auto data = llama_perf_sampler(chain); |
|
|
|
LLAMA_LOG_INFO("%s: sampling time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n", |
|
__func__, data.t_sample_ms, data.n_sample, data.t_sample_ms / data.n_sample, 1e3 / data.t_sample_ms * data.n_sample); |
|
} |
|
|
|
void llama_perf_sampler_reset(struct llama_sampler * chain) { |
|
if (chain == nullptr || chain->iface != &llama_sampler_chain_i) { |
|
GGML_ABORT("%s: invalid sampler passed - requires a sampler created with llama_sampler_chain_init()\n", __func__); |
|
} |
|
|
|
auto * ctx = (struct llama_sampler_chain *) chain->ctx; |
|
|
|
ctx->t_sample_us = ctx->n_sample = 0; |
|
} |
|
|