|
#include "llama-vocab.h" |
|
|
|
#include "llama-impl.h" |
|
#include "llama-model-loader.h" |
|
|
|
#include "unicode.h" |
|
|
|
#include <algorithm> |
|
#include <cassert> |
|
#include <cfloat> |
|
#include <climits> |
|
#include <cstdarg> |
|
#include <cstring> |
|
#include <forward_list> |
|
#include <map> |
|
#include <queue> |
|
#include <set> |
|
#include <unordered_map> |
|
|
|
|
|
|
|
|
|
|
|
struct naive_trie { |
|
naive_trie() : has_value(false), value(0) { |
|
} |
|
void insert(const char * key, size_t len, int32_t value = 0) { |
|
if (len == 0) { |
|
this->has_value = true; |
|
this->value = value; |
|
return; |
|
} |
|
char c = key[0]; |
|
auto res = children.find(c); |
|
if (res != children.end()) { |
|
res->second.insert(key + 1, len - 1, value); |
|
} else { |
|
auto res = children.insert(std::make_pair(c, naive_trie())); |
|
res.first->second.insert(key + 1, len - 1, value); |
|
} |
|
} |
|
std::pair<const char *, size_t> get_longest_prefix(const char * key, size_t len, size_t offset = 0) const { |
|
if (len == 0 || offset == len) { |
|
return std::make_pair(key, offset); |
|
} |
|
char c = key[offset]; |
|
auto res = children.find(c); |
|
if (res != children.end()) { |
|
return res->second.get_longest_prefix(key, len, offset + 1); |
|
} |
|
|
|
return std::make_pair(key, offset); |
|
} |
|
const struct naive_trie * traverse(const char c) const { |
|
auto res = children.find(c); |
|
if (res != children.end()) { |
|
return &res->second; |
|
} |
|
|
|
return NULL; |
|
} |
|
std::map<char, struct naive_trie> children; |
|
bool has_value; |
|
llama_token value; |
|
}; |
|
|
|
|
|
|
|
|
|
|
|
struct llm_tokenizer { |
|
llm_tokenizer() {} |
|
virtual ~llm_tokenizer() = default; |
|
}; |
|
|
|
struct llm_symbol { |
|
using index = int; |
|
index prev; |
|
index next; |
|
const char * text; |
|
size_t n; |
|
}; |
|
|
|
static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable"); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
struct llm_bigram_spm { |
|
struct comparator { |
|
bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) { |
|
return (l.score < r.score) || (l.score == r.score && l.left > r.left); |
|
} |
|
}; |
|
using queue_storage = std::vector<llm_bigram_spm>; |
|
using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>; |
|
llm_symbol::index left; |
|
llm_symbol::index right; |
|
float score; |
|
size_t size; |
|
}; |
|
|
|
struct llm_tokenizer_spm : llm_tokenizer { |
|
llm_tokenizer_spm(const llama_vocab & ) {} |
|
}; |
|
|
|
struct llm_tokenizer_spm_session { |
|
llm_tokenizer_spm_session(const llama_vocab & vocab) : vocab(vocab) {} |
|
|
|
void tokenize(const std::string & text, std::vector<llama_token> & output) { |
|
|
|
int index = 0; |
|
size_t offs = 0; |
|
while (offs < text.size()) { |
|
llm_symbol sym; |
|
size_t len = unicode_len_utf8(text[offs]); |
|
sym.text = text.c_str() + offs; |
|
sym.n = std::min(len, text.size() - offs); |
|
offs += sym.n; |
|
sym.prev = index - 1; |
|
sym.next = offs == text.size() ? -1 : index + 1; |
|
index++; |
|
symbols.emplace_back(sym); |
|
} |
|
|
|
|
|
for (int i = 1; i < (int) symbols.size(); ++i) { |
|
try_add_bigram(i - 1, i); |
|
} |
|
|
|
|
|
while (!work_queue.empty()) { |
|
auto bigram = work_queue.top(); |
|
work_queue.pop(); |
|
|
|
auto & left_sym = symbols[bigram.left]; |
|
auto & right_sym = symbols[bigram.right]; |
|
|
|
|
|
if (left_sym.n == 0 || right_sym.n == 0 || |
|
left_sym.n + right_sym.n != bigram.size) { |
|
continue; |
|
} |
|
|
|
|
|
left_sym.n += right_sym.n; |
|
right_sym.n = 0; |
|
|
|
|
|
|
|
|
|
left_sym.next = right_sym.next; |
|
if (right_sym.next >= 0) { |
|
symbols[right_sym.next].prev = bigram.left; |
|
} |
|
|
|
|
|
try_add_bigram(left_sym.prev, bigram.left); |
|
try_add_bigram(bigram.left, left_sym.next); |
|
} |
|
|
|
for (int i = 0; i != -1; i = symbols[i].next) { |
|
auto & symbol = symbols[i]; |
|
resegment(symbol, output); |
|
} |
|
} |
|
|
|
private: |
|
void resegment(llm_symbol & symbol, std::vector<llama_token> & output) { |
|
auto text = std::string(symbol.text, symbol.n); |
|
auto token = vocab.text_to_token(text); |
|
|
|
|
|
if (token != LLAMA_TOKEN_NULL) { |
|
output.push_back(token); |
|
return; |
|
} |
|
|
|
const auto p = rev_merge.find(text); |
|
|
|
if (p == rev_merge.end()) { |
|
|
|
output.reserve(output.size() + symbol.n); |
|
for (int j = 0; j < (int)symbol.n; ++j) { |
|
llama_token id = vocab.byte_to_token(symbol.text[j]); |
|
output.push_back(id); |
|
} |
|
return; |
|
} |
|
|
|
resegment(symbols[p->second.first], output); |
|
resegment(symbols[p->second.second], output); |
|
} |
|
|
|
void try_add_bigram(int left, int right) { |
|
if (left == -1 || right == -1) { |
|
return; |
|
} |
|
const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n); |
|
auto token = vocab.text_to_token(text); |
|
|
|
if (token == LLAMA_TOKEN_NULL) { |
|
return; |
|
} |
|
|
|
if (static_cast<uint32_t>(token) >= vocab.n_tokens()) { |
|
return; |
|
} |
|
|
|
const auto & tok_data = vocab.get_token_data(token); |
|
|
|
llm_bigram_spm bigram; |
|
bigram.left = left; |
|
bigram.right = right; |
|
bigram.score = tok_data.score; |
|
bigram.size = text.size(); |
|
|
|
work_queue.push(bigram); |
|
|
|
|
|
rev_merge[text] = std::make_pair(left, right); |
|
} |
|
|
|
const llama_vocab & vocab; |
|
|
|
|
|
|
|
std::vector<llm_symbol> symbols; |
|
llm_bigram_spm::queue work_queue; |
|
std::map<std::string, std::pair<int, int>> rev_merge; |
|
}; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename T, typename Container = std::vector<T>, typename Compare = std::less<typename Container::value_type>> |
|
class llama_priority_queue : public std::priority_queue<T, Container, Compare> { |
|
public: |
|
using std::priority_queue<T, Container, Compare>::priority_queue; |
|
|
|
T pop_move() { |
|
T item = std::move(this->c.front()); |
|
std::pop_heap(this->c.begin(), this->c.end(), this->comp); |
|
this->c.pop_back(); |
|
return item; |
|
} |
|
|
|
void pop() = delete; |
|
}; |
|
|
|
struct llm_bigram_bpe { |
|
struct comparator { |
|
bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const { |
|
return l.rank > r.rank || (l.rank == r.rank && l.left > r.left); |
|
} |
|
}; |
|
|
|
using queue_storage = std::vector<llm_bigram_bpe>; |
|
using queue = llama_priority_queue<llm_bigram_bpe, queue_storage, comparator>; |
|
llm_symbol::index left; |
|
llm_symbol::index right; |
|
std::string text; |
|
int rank; |
|
size_t size; |
|
}; |
|
|
|
struct llm_tokenizer_bpe : llm_tokenizer { |
|
llm_tokenizer_bpe(const llama_vocab & vocab) { |
|
GGML_ASSERT(vocab.get_type() == LLAMA_VOCAB_TYPE_BPE); |
|
switch (vocab.get_pre_type()) { |
|
case LLAMA_VOCAB_PRE_TYPE_LLAMA3: |
|
regex_exprs = { |
|
|
|
|
|
|
|
|
|
"(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", |
|
}; |
|
break; |
|
case LLAMA_VOCAB_PRE_TYPE_DBRX: |
|
case LLAMA_VOCAB_PRE_TYPE_SMAUG: |
|
regex_exprs = { |
|
|
|
"(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", |
|
}; |
|
break; |
|
case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM: |
|
regex_exprs = { |
|
"[\r\n]", |
|
"\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+", |
|
"\\s?[!-/:-~!-/:-~‘-‟ -。]+", |
|
"\\s+$", |
|
"[一-龥ࠀ-一가-]+", |
|
"\\p{N}+", |
|
}; |
|
break; |
|
case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM: |
|
regex_exprs = { |
|
"\\p{N}{1,3}", |
|
"[一-龥-ゟ゠-ヿ]+", |
|
"[!\"#$%&'()*+,\\-./:;<=>?@\\[\\\\\\]^_`{|}~][A-Za-z]+|[^\r\n\\p{L}\\p{P}\\p{S}]?[\\p{L}\\p{M}]+| ?[\\p{P}\\p{S}]+[\r\n]*|\\s*[\r\n]+|\\s+(?!\\S)|\\s+", |
|
}; |
|
break; |
|
case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER: |
|
regex_exprs = { |
|
"[\r\n]", |
|
"\\s?\\p{L}+", |
|
"\\s?\\p{P}+", |
|
"[一-龥ࠀ-一가-]+", |
|
"\\p{N}", |
|
}; |
|
break; |
|
case LLAMA_VOCAB_PRE_TYPE_FALCON: |
|
regex_exprs = { |
|
"[\\p{P}\\$\\+<=>\\^~\\|`]+", |
|
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)", |
|
"[0-9][0-9][0-9]", |
|
}; |
|
break; |
|
case LLAMA_VOCAB_PRE_TYPE_STARCODER: |
|
case LLAMA_VOCAB_PRE_TYPE_REFACT: |
|
case LLAMA_VOCAB_PRE_TYPE_COMMAND_R: |
|
case LLAMA_VOCAB_PRE_TYPE_SMOLLM: |
|
case LLAMA_VOCAB_PRE_TYPE_CODESHELL: |
|
case LLAMA_VOCAB_PRE_TYPE_EXAONE: |
|
case LLAMA_VOCAB_PRE_TYPE_MINERVA: |
|
regex_exprs = { |
|
"\\p{N}", |
|
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)", |
|
}; |
|
break; |
|
case LLAMA_VOCAB_PRE_TYPE_GPT2: |
|
case LLAMA_VOCAB_PRE_TYPE_MPT: |
|
case LLAMA_VOCAB_PRE_TYPE_OLMO: |
|
case LLAMA_VOCAB_PRE_TYPE_JAIS: |
|
regex_exprs = { |
|
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)", |
|
}; |
|
break; |
|
case LLAMA_VOCAB_PRE_TYPE_STABLELM2: |
|
case LLAMA_VOCAB_PRE_TYPE_QWEN2: |
|
regex_exprs = { |
|
|
|
|
|
"(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", |
|
}; |
|
break; |
|
case LLAMA_VOCAB_PRE_TYPE_PORO: |
|
case LLAMA_VOCAB_PRE_TYPE_BLOOM: |
|
case LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH: |
|
regex_exprs = { |
|
" ?[^(\\s|.,!?…。,、।۔،)]+", |
|
}; |
|
break; |
|
case LLAMA_VOCAB_PRE_TYPE_CHATGLM4: |
|
regex_exprs = { |
|
"(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", |
|
}; |
|
break; |
|
case LLAMA_VOCAB_PRE_TYPE_VIKING: |
|
regex_exprs = { |
|
" ?[^(\\s|.,!?…。,、।۔،)]+", |
|
"\\p{N}", |
|
}; |
|
break; |
|
case LLAMA_VOCAB_PRE_TYPE_TEKKEN: |
|
|
|
|
|
regex_exprs = { |
|
"[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))*((?=[\\p{L}])([^A-Z]))+|[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))+((?=[\\p{L}])([^A-Z]))*|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", |
|
}; |
|
break; |
|
case LLAMA_VOCAB_PRE_TYPE_CHAMELEON: |
|
|
|
|
|
|
|
|
|
regex_exprs = { |
|
"<sentinel:[0-9]+>", |
|
"(IMGIMG)((A|B|C|D|E|F|G|H|I){1,4})Z", |
|
"([\\t\\n]| | )", |
|
"\\p{N}", |
|
"[\\p{P}!-/:-@\\[-`{-~]", |
|
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)", |
|
}; |
|
break; |
|
default: |
|
|
|
regex_exprs = { |
|
"[\\p{P}\\$\\+<=>\\^~\\|]+", |
|
"'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)", |
|
"\\p{N}+", |
|
"[0-9][0-9][0-9]", |
|
}; |
|
break; |
|
} |
|
} |
|
|
|
std::vector<std::string> regex_exprs; |
|
}; |
|
|
|
struct llm_tokenizer_bpe_session { |
|
llm_tokenizer_bpe_session(const llama_vocab & vocab, const llm_tokenizer_bpe & tokenizer) : vocab(vocab), tokenizer(tokenizer) {} |
|
|
|
static void append(const llama_token token_id, std::vector<llama_token> & output) { |
|
output.push_back(token_id); |
|
} |
|
|
|
bool append_bos(std::vector<llama_token> & output) const { |
|
if (vocab.get_add_bos()) { |
|
GGML_ASSERT(vocab.token_bos() != LLAMA_TOKEN_NULL); |
|
output.push_back(vocab.token_bos()); |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
bool append_eos(std::vector<llama_token> & output) const { |
|
if (vocab.get_add_eos()) { |
|
GGML_ASSERT(vocab.token_eos() != LLAMA_TOKEN_NULL); |
|
output.push_back(vocab.token_eos()); |
|
return true; |
|
} |
|
return false; |
|
} |
|
|
|
void check_double_bos_eos(const std::vector<llama_token> & output) const { |
|
if (vocab.get_add_bos() && output.size() >= 2 && output[1] == vocab.token_bos()) { |
|
LLAMA_LOG_WARN( |
|
"%s: Added a BOS token to the prompt as specified by the model but the prompt " |
|
"also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. " |
|
"Are you sure this is what you want?\n", __FUNCTION__); |
|
} |
|
if (vocab.get_add_eos() && output.size() >= 2 && *(output.end()-2) == vocab.token_eos()) { |
|
LLAMA_LOG_WARN( |
|
"%s: Added a EOS token to the prompt as specified by the model but the prompt " |
|
"also ends with a EOS token. So now the final prompt ends with 2 EOS tokens. " |
|
"Are you sure this is what you want?\n", __FUNCTION__); |
|
} |
|
} |
|
|
|
void tokenize(const std::string & text, std::vector<llama_token> & output) { |
|
int final_prev_index = -1; |
|
const auto word_collection = unicode_regex_split(text, tokenizer.regex_exprs); |
|
|
|
symbols_final.clear(); |
|
|
|
for (const auto & word : word_collection) { |
|
work_queue = llm_bigram_bpe::queue(); |
|
symbols.clear(); |
|
|
|
int index = 0; |
|
size_t offset = 0; |
|
|
|
|
|
if (vocab.get_ignore_merges() && vocab.text_to_token(word) != LLAMA_TOKEN_NULL) { |
|
symbols.emplace_back(llm_symbol{-1, -1, word.c_str(), word.size()}); |
|
offset = word.size(); |
|
} |
|
|
|
while (offset < word.size()) { |
|
llm_symbol sym; |
|
size_t char_len = std::min(word.size() - offset, (size_t) unicode_len_utf8(word[offset])); |
|
sym.text = word.c_str() + offset; |
|
sym.n = char_len; |
|
offset += sym.n; |
|
sym.prev = index - 1; |
|
sym.next = offset == word.size() ? -1 : index + 1; |
|
index++; |
|
symbols.emplace_back(sym); |
|
} |
|
for (int i = 1; i < (int) symbols.size(); ++i) { |
|
add_new_bigram(i - 1, i); |
|
} |
|
|
|
|
|
while (!work_queue.empty()) { |
|
auto bigram = work_queue.pop_move(); |
|
|
|
auto & left_symbol = symbols[bigram.left]; |
|
auto & right_symbol = symbols[bigram.right]; |
|
|
|
if (left_symbol.n == 0 || right_symbol.n == 0) { |
|
continue; |
|
} |
|
std::string left_token = std::string(left_symbol.text, left_symbol.n); |
|
std::string right_token = std::string(right_symbol.text, right_symbol.n); |
|
if (left_token + right_token != bigram.text) { |
|
continue; |
|
} |
|
|
|
|
|
left_symbol.n += right_symbol.n; |
|
right_symbol.n = 0; |
|
|
|
|
|
left_symbol.next = right_symbol.next; |
|
if (right_symbol.next >= 0) { |
|
symbols[right_symbol.next].prev = bigram.left; |
|
} |
|
|
|
add_new_bigram(left_symbol.prev, bigram.left); |
|
add_new_bigram(bigram.left, left_symbol.next); |
|
} |
|
|
|
|
|
for (auto & sym : symbols) { |
|
if (sym.n > 0) { |
|
sym.prev = final_prev_index; |
|
sym.next = -1; |
|
if (final_prev_index != -1) { |
|
symbols_final[final_prev_index].next = symbols_final.size(); |
|
} |
|
symbols_final.emplace_back(sym); |
|
final_prev_index = symbols_final.size() - 1; |
|
} |
|
} |
|
} |
|
|
|
symbols = symbols_final; |
|
|
|
if (!symbols.empty()) { |
|
for (int i = 0; i != -1; i = symbols[i].next) { |
|
auto & symbol = symbols[i]; |
|
if (symbol.n == 0) { |
|
continue; |
|
} |
|
|
|
const std::string str = std::string(symbol.text, symbol.n); |
|
const auto token = vocab.text_to_token(str); |
|
|
|
if (token == LLAMA_TOKEN_NULL) { |
|
for (auto j = str.begin(); j != str.end(); ++j) { |
|
std::string byte_str(1, *j); |
|
auto token_multibyte = vocab.text_to_token(byte_str); |
|
if (token_multibyte != LLAMA_TOKEN_NULL) { |
|
output.push_back(token_multibyte); |
|
} |
|
} |
|
} else { |
|
output.push_back(token); |
|
} |
|
} |
|
} |
|
} |
|
|
|
private: |
|
void add_new_bigram(int left, int right) { |
|
if (left == -1 || right == -1) { |
|
return; |
|
} |
|
std::string left_token = std::string(symbols[left].text, symbols[left].n); |
|
std::string right_token = std::string(symbols[right].text, symbols[right].n); |
|
|
|
int rank_found = -1; |
|
|
|
rank_found = vocab.find_bpe_rank(left_token, right_token); |
|
|
|
if (rank_found < 0) { |
|
return; |
|
} |
|
|
|
llm_bigram_bpe bigram; |
|
|
|
bigram.left = left; |
|
bigram.right = right; |
|
bigram.text = left_token + right_token; |
|
bigram.size = left_token.size() + right_token.size(); |
|
bigram.rank = rank_found; |
|
|
|
work_queue.push(bigram); |
|
} |
|
|
|
const llama_vocab & vocab; |
|
const llm_tokenizer_bpe & tokenizer; |
|
|
|
std::vector<llm_symbol> symbols; |
|
std::vector<llm_symbol> symbols_final; |
|
llm_bigram_bpe::queue work_queue; |
|
}; |
|
|
|
|
|
|
|
|
|
|
|
struct llm_tokenizer_wpm : llm_tokenizer { |
|
llm_tokenizer_wpm(const llama_vocab & ) {} |
|
}; |
|
|
|
struct llm_tokenizer_wpm_session { |
|
llm_tokenizer_wpm_session(const llama_vocab & vocab) : vocab(vocab) {} |
|
|
|
void tokenize(const std::string & text, std::vector<llama_token> & output) { |
|
|
|
std::vector<std::string> words = preprocess(text); |
|
|
|
|
|
|
|
for (const std::string & word : words) { |
|
|
|
if (word.size() == 0) { |
|
continue; |
|
} |
|
|
|
|
|
const std::string word1 = "\xe2\x96\x81" + word; |
|
const int n = word1.size(); |
|
|
|
const size_t current_tokens = output.size(); |
|
|
|
|
|
|
|
for (int i = 0; i < n; ++i) { |
|
|
|
bool match = false; |
|
for (int j = std::min(n, i + vocab.max_token_len() + 1); j > i; j--) { |
|
auto id = vocab.text_to_token(word1.substr(i, j - i)); |
|
if (id != LLAMA_TOKEN_NULL) { |
|
output.push_back(id); |
|
match = true; |
|
i = j - 1; |
|
break; |
|
} |
|
} |
|
|
|
if (!match) { |
|
output.resize(current_tokens); |
|
break; |
|
} |
|
} |
|
|
|
|
|
if (current_tokens == output.size()) { |
|
output.push_back(vocab.token_unk()); |
|
} |
|
} |
|
} |
|
|
|
|
|
static std::vector<std::string> preprocess(const std::string & text) { |
|
const std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text)); |
|
std::vector<std::string> words(1, ""); |
|
|
|
for (const uint32_t cpt : cpts_nfd) { |
|
const auto flags = unicode_cpt_flags_from_cpt(cpt); |
|
|
|
if (flags.is_whitespace) { |
|
if (words.back().size()) { |
|
words.emplace_back(); |
|
} |
|
continue; |
|
} |
|
|
|
assert (!flags.is_separator); |
|
if (cpt == 0 || cpt == 0xFFFD || flags.is_control) { |
|
continue; |
|
} |
|
|
|
const std::string s = unicode_cpt_to_utf8(unicode_tolower(cpt)); |
|
if (flags.is_punctuation || ( cpt < 0x7F && flags.is_symbol ) || is_chinese_char(cpt)) { |
|
if (words.back().size()) { |
|
words.emplace_back(); |
|
} |
|
words.back() = s; |
|
words.emplace_back(); |
|
} else { |
|
words.back() += s; |
|
} |
|
} |
|
|
|
if (!words.back().size()) { |
|
words.pop_back(); |
|
} |
|
|
|
return words; |
|
} |
|
|
|
static bool is_chinese_char(uint32_t cpt) { |
|
return |
|
(cpt >= 0x04E00 && cpt <= 0x09FFF) || |
|
(cpt >= 0x03400 && cpt <= 0x04DBF) || |
|
(cpt >= 0x20000 && cpt <= 0x2A6DF) || |
|
(cpt >= 0x2A700 && cpt <= 0x2B73F) || |
|
(cpt >= 0x2B740 && cpt <= 0x2B81F) || |
|
(cpt >= 0x2B920 && cpt <= 0x2CEAF) || |
|
(cpt >= 0x0F900 && cpt <= 0x0FAFF) || |
|
(cpt >= 0x2F800 && cpt <= 0x2FA1F); |
|
|
|
|
|
} |
|
|
|
private: |
|
const llama_vocab & vocab; |
|
|
|
|
|
}; |
|
|
|
|
|
|
|
|
|
|
|
struct llm_tokenizer_ugm : llm_tokenizer { |
|
llm_tokenizer_ugm(const llama_vocab & vocab, const std::vector<char> & precompiled_charsmap) { |
|
if (precompiled_charsmap.size() > 0) { |
|
size_t charsmap_offset = 0; |
|
|
|
|
|
|
|
uint32_t xcda_blob_size = *(const uint32_t *) &precompiled_charsmap[0]; |
|
charsmap_offset += sizeof(xcda_blob_size); |
|
if (xcda_blob_size + charsmap_offset >= precompiled_charsmap.size()) { |
|
throw std::runtime_error("Index out of array bounds in precompiled charsmap!"); |
|
} |
|
|
|
|
|
|
|
xcda_array = (const uint32_t *) &precompiled_charsmap[charsmap_offset]; |
|
xcda_array_size = xcda_blob_size / sizeof(uint32_t); |
|
charsmap_offset += xcda_blob_size; |
|
|
|
|
|
|
|
prefix_replacements = &precompiled_charsmap[charsmap_offset]; |
|
prefix_replacements_size = precompiled_charsmap.size() - charsmap_offset; |
|
} |
|
|
|
for (uint32_t id = 0; id < vocab.n_tokens(); ++id) { |
|
const auto & token_data = vocab.get_token_data(id); |
|
|
|
if (vocab.is_normal(id)) { |
|
min_score = std::min<float>(min_score, token_data.score); |
|
max_score = std::max<float>(max_score, token_data.score); |
|
} |
|
|
|
if (vocab.is_normal(id) || |
|
vocab.is_user_defined(id) || |
|
vocab.is_unused(id)) { |
|
token_matcher.insert(token_data.text.data(), token_data.text.size(), id); |
|
} |
|
|
|
if (vocab.is_user_defined(id)) { |
|
user_defined_token_matcher.insert(token_data.text.data(), token_data.text.size()); |
|
} |
|
} |
|
|
|
unknown_token_score = min_score - unknown_token_score_penalty; |
|
} |
|
|
|
|
|
const std::string escaped_space = "\xE2\x96\x81"; |
|
|
|
const char * prefix_replacements = NULL; |
|
size_t prefix_replacements_size = 0; |
|
|
|
const uint32_t * xcda_array = NULL; |
|
size_t xcda_array_size = 0; |
|
|
|
struct naive_trie user_defined_token_matcher; |
|
|
|
float min_score = FLT_MAX; |
|
float max_score = -FLT_MAX; |
|
|
|
float unknown_token_score_penalty = 10.0; |
|
float unknown_token_score; |
|
|
|
struct naive_trie token_matcher; |
|
}; |
|
|
|
struct llm_tokenizer_ugm_session { |
|
llm_tokenizer_ugm_session(const llama_vocab & vocab, const llm_tokenizer_ugm & tokenizer) : vocab(vocab), tokenizer(tokenizer) {} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void tokenize(const std::string & text, std::vector<llama_token> & output) { |
|
|
|
size_t output_size = output.size(); |
|
|
|
|
|
std::string normalized; |
|
normalize(text, &normalized); |
|
size_t input_len = normalized.size(); |
|
if (input_len == 0) { |
|
return; |
|
} |
|
|
|
|
|
std::vector<struct best_tokenization> tokenization_results(input_len + 1, {vocab.token_unk(), 0, -FLT_MAX}); |
|
|
|
tokenization_results[0] = { vocab.token_unk(), 0, 0 }; |
|
|
|
for (size_t input_offset = 0; input_offset < input_len;) { |
|
size_t prefix_offset = input_offset; |
|
|
|
size_t n_utf8_code_units = std::min<size_t>(unicode_len_utf8(normalized[input_offset]), input_len - input_offset); |
|
|
|
|
|
bool single_codepoint_token_found = false; |
|
const struct best_tokenization & current_best = tokenization_results[input_offset]; |
|
const struct naive_trie * node = tokenizer.token_matcher.traverse(normalized[prefix_offset++]); |
|
|
|
while (prefix_offset <= input_len && node != NULL) { |
|
|
|
if (node->has_value) { |
|
|
|
if (prefix_offset - input_offset == n_utf8_code_units) { |
|
single_codepoint_token_found = true; |
|
} |
|
llama_token token_id = node->value; |
|
const auto & token_data = vocab.get_token_data(token_id); |
|
|
|
|
|
|
|
|
|
|
|
const double token_score = vocab.is_user_defined(token_id) ? 0.0 : token_data.score; |
|
const double challenger_score = current_best.score_sum + token_score; |
|
struct best_tokenization & current_champ = tokenization_results[prefix_offset]; |
|
if (challenger_score > current_champ.score_sum) { |
|
struct best_tokenization challenger = { token_id, input_offset, (float) challenger_score }; |
|
current_champ = challenger; |
|
} |
|
} |
|
node = node->traverse(normalized[prefix_offset++]); |
|
} |
|
|
|
|
|
|
|
if (!single_codepoint_token_found) { |
|
const double challenger_score = current_best.score_sum + tokenizer.unknown_token_score; |
|
prefix_offset = input_offset + n_utf8_code_units; |
|
struct best_tokenization & current_champ = tokenization_results[prefix_offset]; |
|
if (challenger_score > current_champ.score_sum) { |
|
struct best_tokenization challenger = { vocab.token_unk(), input_offset, (float) challenger_score }; |
|
current_champ = challenger; |
|
} |
|
} |
|
|
|
|
|
input_offset += n_utf8_code_units; |
|
} |
|
|
|
|
|
|
|
bool is_prev_unknown = false; |
|
for (struct best_tokenization & tokenization = tokenization_results[input_len]; ; tokenization = tokenization_results[tokenization.input_offset]) { |
|
bool is_unknown = tokenization.token_id == vocab.token_unk(); |
|
if (!(is_prev_unknown && is_unknown)) { |
|
output.push_back(tokenization.token_id); |
|
} |
|
if (tokenization.input_offset == 0) { |
|
break; |
|
} |
|
is_prev_unknown = is_unknown; |
|
} |
|
|
|
|
|
std::reverse(output.begin() + output_size, output.end()); |
|
} |
|
|
|
private: |
|
|
|
|
|
struct normalization_result { |
|
const char * normalized; |
|
size_t normalized_len; |
|
size_t consumed_input; |
|
}; |
|
|
|
void normalize(const std::string& input, std::string * normalized) { |
|
normalized->clear(); |
|
normalized->reserve(input.size() * 3); |
|
|
|
const std::string space = vocab.get_escape_whitespaces() ? tokenizer.escaped_space : " "; |
|
|
|
const bool shall_prepend_space = !vocab.get_treat_whitespace_as_suffix() && vocab.get_add_space_prefix(); |
|
const bool shall_append_space = vocab.get_treat_whitespace_as_suffix() && vocab.get_add_space_prefix(); |
|
const bool shall_merge_spaces = vocab.get_remove_extra_whitespaces(); |
|
|
|
bool is_space_prepended = false; |
|
bool processing_non_ws = false; |
|
|
|
size_t input_len = input.size(); |
|
|
|
for (size_t input_offset = 0; input_offset < input_len; ) { |
|
auto norm_res = normalize_prefix(input, input_offset); |
|
for (size_t i = 0; i < norm_res.normalized_len; i++) { |
|
char c = norm_res.normalized[i]; |
|
if (c != ' ') { |
|
if (!processing_non_ws) { |
|
processing_non_ws = true; |
|
if ((shall_prepend_space && !is_space_prepended) || shall_merge_spaces) { |
|
normalized->append(space); |
|
is_space_prepended = true; |
|
} |
|
} |
|
normalized->push_back(c); |
|
} else { |
|
if (processing_non_ws) { |
|
processing_non_ws = false; |
|
} |
|
if (!shall_merge_spaces) { |
|
normalized->append(space); |
|
} |
|
} |
|
} |
|
|
|
input_offset += norm_res.consumed_input; |
|
} |
|
|
|
if (shall_append_space) { |
|
normalized->append(space); |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
struct xcda_array_view { |
|
public: |
|
xcda_array_view(const uint32_t * xcda_array, size_t xcda_array_size) : xcda_array(xcda_array), xcda_array_size(xcda_array_size) { |
|
} |
|
uint32_t get_base(size_t index) { |
|
uint32_t packed_node = get_node(index); |
|
return (packed_node >> 10) << ((packed_node & (1U << 9)) >> 6); |
|
} |
|
uint32_t get_lcheck(size_t index) { |
|
uint32_t packed_node = get_node(index); |
|
return packed_node & ((1U << 31) | 0xff); |
|
} |
|
bool get_leaf(size_t index) { |
|
uint32_t packed_node = get_node(index); |
|
return (packed_node >> 8) & 1; |
|
} |
|
uint32_t get_value(size_t index) { |
|
uint32_t packed_node = get_node(index); |
|
return packed_node & ((1U << 31) - 1); |
|
} |
|
private: |
|
uint32_t get_node(size_t index) { |
|
if (index > xcda_array_size) { |
|
throw std::runtime_error("Index out of array bounds in XCDA array!"); |
|
} |
|
return xcda_array[index]; |
|
} |
|
const uint32_t * xcda_array; |
|
size_t xcda_array_size; |
|
}; |
|
|
|
|
|
struct best_tokenization { |
|
llama_token token_id; |
|
size_t input_offset; |
|
float score_sum; |
|
}; |
|
|
|
struct normalization_result normalize_prefix(const std::string & input, size_t input_offset) { |
|
if (input_offset == input.size()) { |
|
return { &input[input_offset], 0, 0 }; |
|
} |
|
|
|
|
|
auto user_defined_token_match = |
|
tokenizer.user_defined_token_matcher.get_longest_prefix(&input[input_offset], input.size() - input_offset); |
|
if (user_defined_token_match.second > 0) { |
|
return { &input[input_offset], user_defined_token_match.second, user_defined_token_match.second }; |
|
} |
|
|
|
size_t longest_prefix_length = 0; |
|
size_t longest_prefix_offset = 0; |
|
|
|
if (tokenizer.xcda_array_size > 0) { |
|
struct xcda_array_view xcda_view(tokenizer.xcda_array, tokenizer.xcda_array_size); |
|
|
|
|
|
|
|
|
|
|
|
uint32_t node_index = 0; |
|
|
|
node_index = xcda_view.get_base(node_index); |
|
for (size_t prefix_offset = input_offset; prefix_offset < input.size(); prefix_offset++) { |
|
unsigned char c = input[prefix_offset]; |
|
if (c == 0) { |
|
break; |
|
} |
|
node_index ^= c; |
|
|
|
|
|
if (xcda_view.get_lcheck(node_index) != c) { |
|
break; |
|
} |
|
bool is_leaf = xcda_view.get_leaf(node_index); |
|
|
|
node_index ^= xcda_view.get_base(node_index); |
|
|
|
|
|
if (is_leaf) |
|
{ |
|
longest_prefix_length = prefix_offset - input_offset + 1; |
|
|
|
longest_prefix_offset = xcda_view.get_value(node_index); |
|
} |
|
} |
|
} |
|
|
|
if (longest_prefix_length > 0) { |
|
|
|
if (longest_prefix_offset >= tokenizer.prefix_replacements_size) { |
|
throw std::runtime_error("Index out of array bounds in precompiled charsmap!"); |
|
} |
|
const char * prefix_replacement = &(tokenizer.prefix_replacements)[longest_prefix_offset]; |
|
return { prefix_replacement, strlen(prefix_replacement), longest_prefix_length }; |
|
} |
|
|
|
|
|
try { |
|
|
|
size_t prefix_offset = input_offset; |
|
unicode_cpt_from_utf8(input, prefix_offset); |
|
return { &input[input_offset], prefix_offset - input_offset, prefix_offset - input_offset }; |
|
} catch (std::invalid_argument & ) { |
|
|
|
return { "\xEF\xBF\xBD", 3, 1 }; |
|
} |
|
} |
|
|
|
const llama_vocab & vocab; |
|
const llm_tokenizer_ugm & tokenizer; |
|
}; |
|
|
|
|
|
|
|
|
|
|
|
static std::vector<uint8_t> llama_unescape_rwkv_token(const std::string & escaped) { |
|
std::vector<uint8_t> output; |
|
output.reserve(escaped.size()); |
|
|
|
|
|
bool escaping = false; |
|
uint8_t hex_remaining = 0; |
|
uint8_t hex_acc = 0; |
|
|
|
|
|
for (const char & c : escaped) { |
|
|
|
if (hex_remaining != 0) { |
|
uint8_t value = (c >= 'a') ? (c - 'a' + 10) : (c - '0'); |
|
hex_acc = (hex_acc << 4) + value; |
|
|
|
hex_remaining -= 1; |
|
if (hex_remaining == 0) { |
|
output.push_back(hex_acc); |
|
hex_acc = 0; |
|
} |
|
|
|
continue; |
|
} |
|
|
|
|
|
if (escaping) { |
|
if (c == 't') { |
|
output.push_back('\t'); |
|
} else if (c == 'n') { |
|
output.push_back('\n'); |
|
} else if (c == 'r') { |
|
output.push_back('\r'); |
|
} else if (c == 'x') { |
|
hex_remaining = 2; |
|
} else { |
|
output.push_back(c); |
|
} |
|
|
|
escaping = false; |
|
continue; |
|
} |
|
|
|
if (c == '\\') { |
|
escaping = true; |
|
continue; |
|
} |
|
|
|
output.push_back(c); |
|
} |
|
|
|
return output; |
|
} |
|
|
|
struct llm_tokenizer_rwkv : llm_tokenizer { |
|
llm_tokenizer_rwkv(const llama_vocab & vocab) { |
|
|
|
|
|
|
|
|
|
for (uint32_t id = 0; id < vocab.n_tokens(); ++id) { |
|
const auto & data = vocab.get_token_data(id); |
|
const auto text = llama_unescape_rwkv_token(data.text); |
|
token_matcher.insert((const char *) text.data(), text.size(), id); |
|
} |
|
} |
|
|
|
struct naive_trie token_matcher; |
|
}; |
|
|
|
struct llm_tokenizer_rwkv_session { |
|
llm_tokenizer_rwkv_session(const llama_vocab & vocab, const llm_tokenizer_rwkv & tokenizer) : vocab(vocab), tokenizer(tokenizer) {} |
|
|
|
void tokenize(const std::string & text, std::vector<llama_token> & output) { |
|
uint32_t position = 0; |
|
while (position < text.size()) { |
|
const struct naive_trie * node = tokenizer.token_matcher.traverse(text[position]); |
|
if (node == NULL) { |
|
|
|
output.push_back(vocab.token_unk()); |
|
position += 1; |
|
continue; |
|
} |
|
|
|
|
|
uint32_t token_id = 0; |
|
uint32_t token_length = 0; |
|
while (node != NULL) { |
|
if (node->has_value) { |
|
token_id = node->value; |
|
token_length = position + 1; |
|
} |
|
node = node->traverse(text[++position]); |
|
} |
|
|
|
|
|
output.push_back(token_id); |
|
position = token_length; |
|
} |
|
} |
|
|
|
private: |
|
const llama_vocab & vocab; |
|
const llm_tokenizer_rwkv & tokenizer; |
|
}; |
|
|
|
|
|
|
|
|
|
|
|
typedef enum FRAGMENT_BUFFER_VARIANT_TYPE { |
|
FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN, |
|
FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT |
|
} FRAGMENT_BUFFER_VARIANT_TYPE; |
|
|
|
struct fragment_buffer_variant { |
|
fragment_buffer_variant(llama_token _token) |
|
: |
|
type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN), |
|
token(_token), |
|
raw_text(_dummy), |
|
offset(0), |
|
length(0) {} |
|
|
|
fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length) |
|
: |
|
type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT), |
|
token((llama_token) - 1), |
|
raw_text(_raw_text), |
|
offset(_offset), |
|
length(_length){ |
|
GGML_ASSERT(_offset >= 0); |
|
GGML_ASSERT(_length >= 1); |
|
GGML_ASSERT(offset + length <= raw_text.length()); |
|
} |
|
|
|
const FRAGMENT_BUFFER_VARIANT_TYPE type; |
|
const llama_token token; |
|
const std::string _dummy; |
|
const std::string & raw_text; |
|
const uint64_t offset; |
|
const uint64_t length; |
|
}; |
|
|
|
struct llama_vocab::impl { |
|
uint32_t n_token_types = 0; |
|
|
|
enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM; |
|
enum llama_vocab_pre_type pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT; |
|
|
|
int max_token_len = 0; |
|
|
|
|
|
|
|
llama_token special_bos_id = 1; |
|
llama_token special_eos_id = 2; |
|
llama_token special_eot_id = LLAMA_TOKEN_NULL; |
|
llama_token special_eom_id = LLAMA_TOKEN_NULL; |
|
llama_token special_unk_id = 0; |
|
llama_token special_sep_id = LLAMA_TOKEN_NULL; |
|
llama_token special_pad_id = LLAMA_TOKEN_NULL; |
|
llama_token special_mask_id = LLAMA_TOKEN_NULL; |
|
|
|
llama_token linefeed_id = 13; |
|
|
|
|
|
llama_token special_fim_pre_id = LLAMA_TOKEN_NULL; |
|
llama_token special_fim_suf_id = LLAMA_TOKEN_NULL; |
|
llama_token special_fim_mid_id = LLAMA_TOKEN_NULL; |
|
llama_token special_fim_pad_id = LLAMA_TOKEN_NULL; |
|
llama_token special_fim_rep_id = LLAMA_TOKEN_NULL; |
|
llama_token special_fim_sep_id = LLAMA_TOKEN_NULL; |
|
|
|
|
|
bool add_space_prefix = false; |
|
bool add_bos = false; |
|
bool add_eos = false; |
|
bool ignore_merges = false; |
|
bool clean_spaces = false; |
|
bool remove_extra_whitespaces = false; |
|
bool escape_whitespaces = true; |
|
bool treat_whitespace_as_suffix = false; |
|
|
|
std::unordered_map<std::string, llama_token> token_to_id; |
|
std::vector<token_data> id_to_token; |
|
|
|
std::vector<llama_token> cache_special_tokens; |
|
std::vector<std::string> cache_token_to_piece; |
|
struct pair_hash { |
|
size_t operator()(const std::pair<std::string, std::string> & p) const { |
|
return std::hash<std::string>{}(p.first) ^ |
|
(std::hash<std::string>{}(p.second) << 1); |
|
} |
|
}; |
|
std::unordered_map<std::pair<std::string, std::string>, int, pair_hash> bpe_ranks; |
|
|
|
|
|
std::set<llama_token> special_eog_ids; |
|
|
|
std::unique_ptr<llm_tokenizer> tokenizer; |
|
|
|
std::vector<char> precompiled_charsmap; |
|
|
|
impl(const llama_vocab & vocab) : vocab(vocab) { |
|
} |
|
|
|
~impl() = default; |
|
|
|
void load(llama_model_loader & ml, const LLM_KV & kv); |
|
|
|
enum llama_vocab_type get_type() const; |
|
|
|
std::string type_name() const; |
|
|
|
bool is_normal (llama_token id) const; |
|
bool is_unknown (llama_token id) const; |
|
bool is_control (llama_token id) const; |
|
bool is_byte (llama_token id) const; |
|
bool is_user_defined(llama_token id) const; |
|
bool is_unused (llama_token id) const; |
|
bool is_eog (llama_token id) const; |
|
|
|
uint8_t token_to_byte(llama_token id) const; |
|
|
|
llama_token_attr token_get_attr(llama_token id) const; |
|
|
|
void init_tokenizer(enum llama_vocab_type type); |
|
|
|
void tokenizer_st_partition(std::forward_list<fragment_buffer_variant> & buffer, bool parse_special) const; |
|
|
|
std::string token_to_piece_for_cache( |
|
llama_token token, |
|
bool special) const; |
|
|
|
|
|
std::vector<llama_token> tokenize( |
|
const std::string & raw_text, |
|
bool add_special, |
|
bool parse_special = false) const; |
|
|
|
int32_t tokenize( |
|
const char * text, |
|
int32_t text_len, |
|
llama_token * tokens, |
|
int32_t n_tokens_max, |
|
bool add_special, |
|
bool parse_special) const; |
|
|
|
|
|
int32_t token_to_piece( |
|
llama_token token, |
|
char * buf, |
|
int32_t length, |
|
int32_t lstrip, |
|
bool special) const; |
|
|
|
|
|
const std::string & token_to_piece(llama_token token) const; |
|
|
|
int32_t detokenize( |
|
const llama_token * tokens, |
|
int32_t n_tokens, |
|
char * text, |
|
int32_t text_len_max, |
|
bool remove_special, |
|
bool unparse_special) const; |
|
|
|
std::string detokenize( |
|
const std::vector<llama_token> & tokens, |
|
bool special) const; |
|
|
|
void print_info() const; |
|
|
|
private: |
|
const llama_vocab & vocab; |
|
}; |
|
|
|
void llama_vocab::impl::load(llama_model_loader & ml, const LLM_KV & kv) { |
|
struct gguf_context * ctx = ml.meta.get(); |
|
|
|
|
|
{ |
|
std::string tokenizer_model; |
|
std::string tokenizer_pre; |
|
|
|
ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_model); |
|
ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false); |
|
|
|
ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, n_token_types, false); |
|
|
|
if (tokenizer_model == "no_vocab" || tokenizer_model == "none") { |
|
type = LLAMA_VOCAB_TYPE_NONE; |
|
|
|
|
|
special_bos_id = LLAMA_TOKEN_NULL; |
|
special_eos_id = LLAMA_TOKEN_NULL; |
|
special_unk_id = LLAMA_TOKEN_NULL; |
|
special_sep_id = LLAMA_TOKEN_NULL; |
|
special_pad_id = LLAMA_TOKEN_NULL; |
|
special_mask_id = LLAMA_TOKEN_NULL; |
|
linefeed_id = LLAMA_TOKEN_NULL; |
|
|
|
|
|
uint32_t n_tokens = 0; |
|
if (ml.get_key(LLM_KV_VOCAB_SIZE, n_tokens, false)) { |
|
LLAMA_LOG_WARN("%s: adding %u dummy tokens\n", __func__, n_tokens); |
|
id_to_token.resize(n_tokens); |
|
} |
|
|
|
return; |
|
} |
|
|
|
if (tokenizer_model == "llama") { |
|
type = LLAMA_VOCAB_TYPE_SPM; |
|
|
|
|
|
special_bos_id = 1; |
|
special_eos_id = 2; |
|
special_unk_id = 0; |
|
special_sep_id = LLAMA_TOKEN_NULL; |
|
special_pad_id = LLAMA_TOKEN_NULL; |
|
special_mask_id = LLAMA_TOKEN_NULL; |
|
} else if (tokenizer_model == "bert") { |
|
type = LLAMA_VOCAB_TYPE_WPM; |
|
|
|
|
|
special_bos_id = 101; |
|
special_eos_id = LLAMA_TOKEN_NULL; |
|
special_unk_id = 100; |
|
special_sep_id = 102; |
|
special_pad_id = 0; |
|
special_mask_id = 103; |
|
} else if (tokenizer_model == "gpt2") { |
|
type = LLAMA_VOCAB_TYPE_BPE; |
|
|
|
|
|
const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str()); |
|
if (merges_keyidx == -1) { |
|
throw std::runtime_error("cannot find tokenizer merges in model file\n"); |
|
} |
|
|
|
const int n_merges = gguf_get_arr_n(ctx, merges_keyidx); |
|
for (int i = 0; i < n_merges; i++) { |
|
const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i); |
|
|
|
|
|
std::string first; |
|
std::string second; |
|
|
|
const size_t pos = word.find(' ', 1); |
|
|
|
if (pos != std::string::npos) { |
|
first = word.substr(0, pos); |
|
second = word.substr(pos + 1); |
|
} |
|
|
|
bpe_ranks.emplace(std::make_pair(first, second), i); |
|
} |
|
|
|
|
|
special_bos_id = 11; |
|
special_eos_id = 11; |
|
special_unk_id = LLAMA_TOKEN_NULL; |
|
special_sep_id = LLAMA_TOKEN_NULL; |
|
special_pad_id = LLAMA_TOKEN_NULL; |
|
special_mask_id = LLAMA_TOKEN_NULL; |
|
} else if (tokenizer_model == "t5") { |
|
type = LLAMA_VOCAB_TYPE_UGM; |
|
|
|
|
|
special_bos_id = LLAMA_TOKEN_NULL; |
|
special_eos_id = 1; |
|
special_unk_id = 2; |
|
special_sep_id = LLAMA_TOKEN_NULL; |
|
special_pad_id = 0; |
|
special_mask_id = LLAMA_TOKEN_NULL; |
|
|
|
const int precompiled_charsmap_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_PRECOMPILED_CHARSMAP).c_str()); |
|
if (precompiled_charsmap_keyidx != -1) { |
|
size_t n_precompiled_charsmap = gguf_get_arr_n(ctx, precompiled_charsmap_keyidx); |
|
const char * pc = (const char *) gguf_get_arr_data(ctx, precompiled_charsmap_keyidx); |
|
precompiled_charsmap.assign(pc, pc + n_precompiled_charsmap); |
|
#ifdef IS_BIG_ENDIAN |
|
|
|
uint32_t * xcda_blob_size = (uint32_t *) &precompiled_charsmap[0]; |
|
*xcda_blob_size = __builtin_bswap32(*xcda_blob_size); |
|
assert(*xcda_blob_size + sizeof(uint32_t) < n_precompiled_charsmap); |
|
size_t xcda_array_size = *xcda_blob_size / sizeof(uint32_t); |
|
uint32_t * xcda_array = (uint32_t *) &precompiled_charsmap[sizeof(uint32_t)]; |
|
for (size_t i = 0; i < xcda_array_size; ++i) { |
|
xcda_array[i] = __builtin_bswap32(xcda_array[i]); |
|
} |
|
#endif |
|
} |
|
} else if (tokenizer_model == "rwkv") { |
|
type = LLAMA_VOCAB_TYPE_RWKV; |
|
|
|
|
|
special_bos_id = LLAMA_TOKEN_NULL; |
|
special_eos_id = LLAMA_TOKEN_NULL; |
|
special_unk_id = LLAMA_TOKEN_NULL; |
|
special_sep_id = LLAMA_TOKEN_NULL; |
|
special_pad_id = LLAMA_TOKEN_NULL; |
|
} else { |
|
throw std::runtime_error(format("unknown tokenizer: '%s'", tokenizer_model.c_str())); |
|
} |
|
|
|
|
|
if (type == LLAMA_VOCAB_TYPE_BPE) { |
|
add_space_prefix = false; |
|
clean_spaces = true; |
|
if (tokenizer_pre.empty()) { |
|
LLAMA_LOG_WARN("%s: missing pre-tokenizer type, using: 'default'\n", __func__); |
|
LLAMA_LOG_WARN("%s: \n", __func__); |
|
LLAMA_LOG_WARN("%s: ************************************ \n", __func__); |
|
LLAMA_LOG_WARN("%s: GENERATION QUALITY WILL BE DEGRADED! \n", __func__); |
|
LLAMA_LOG_WARN("%s: CONSIDER REGENERATING THE MODEL \n", __func__); |
|
LLAMA_LOG_WARN("%s: ************************************ \n", __func__); |
|
LLAMA_LOG_WARN("%s: \n", __func__); |
|
pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT; |
|
} else if (tokenizer_pre == "default") { |
|
pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT; |
|
} else if ( |
|
tokenizer_pre == "llama3" || |
|
tokenizer_pre == "llama-v3" || |
|
tokenizer_pre == "llama-bpe"|| |
|
tokenizer_pre == "falcon3") { |
|
pre_type = LLAMA_VOCAB_PRE_TYPE_LLAMA3; |
|
ignore_merges = true; |
|
add_bos = true; |
|
} else if ( |
|
tokenizer_pre == "deepseek-llm") { |
|
pre_type = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM; |
|
clean_spaces = false; |
|
} else if ( |
|
tokenizer_pre == "deepseek-coder") { |
|
pre_type = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER; |
|
clean_spaces = false; |
|
} else if ( |
|
tokenizer_pre == "deepseek-v3") { |
|
pre_type = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM; |
|
clean_spaces = false; |
|
} else if ( |
|
tokenizer_pre == "falcon") { |
|
pre_type = LLAMA_VOCAB_PRE_TYPE_FALCON; |
|
} else if ( |
|
tokenizer_pre == "mpt") { |
|
pre_type = LLAMA_VOCAB_PRE_TYPE_MPT; |
|
} else if ( |
|
tokenizer_pre == "starcoder") { |
|
pre_type = LLAMA_VOCAB_PRE_TYPE_STARCODER; |
|
} else if ( |
|
tokenizer_pre == "gpt-2" || |
|
tokenizer_pre == "phi-2" || |
|
tokenizer_pre == "jina-es" || |
|
tokenizer_pre == "jina-de" || |
|
tokenizer_pre == "gigachat" || |
|
tokenizer_pre == "jina-v1-en" || |
|
tokenizer_pre == "jina-v2-es" || |
|
tokenizer_pre == "jina-v2-de" || |
|
tokenizer_pre == "jina-v2-code" || |
|
tokenizer_pre == "roberta-bpe") { |
|
pre_type = LLAMA_VOCAB_PRE_TYPE_GPT2; |
|
} else if ( |
|
tokenizer_pre == "refact") { |
|
pre_type = LLAMA_VOCAB_PRE_TYPE_REFACT; |
|
} else if ( |
|
tokenizer_pre == "command-r") { |
|
pre_type = LLAMA_VOCAB_PRE_TYPE_COMMAND_R; |
|
clean_spaces = false; |
|
} else if ( |
|
tokenizer_pre == "qwen2" || |
|
tokenizer_pre == "deepseek-r1-qwen") { |
|
pre_type = LLAMA_VOCAB_PRE_TYPE_QWEN2; |
|
clean_spaces = false; |
|
} else if ( |
|
tokenizer_pre == "stablelm2") { |
|
pre_type = LLAMA_VOCAB_PRE_TYPE_STABLELM2; |
|
} else if ( |
|
tokenizer_pre == "olmo") { |
|
pre_type = LLAMA_VOCAB_PRE_TYPE_OLMO; |
|
} else if ( |
|
tokenizer_pre == "dbrx") { |
|
pre_type = LLAMA_VOCAB_PRE_TYPE_DBRX; |
|
} else if ( |
|
tokenizer_pre == "smaug-bpe") { |
|
pre_type = LLAMA_VOCAB_PRE_TYPE_SMAUG; |
|
} else if ( |
|
tokenizer_pre == "poro-chat") { |
|
pre_type = LLAMA_VOCAB_PRE_TYPE_PORO; |
|
clean_spaces = false; |
|
} else if ( |
|
tokenizer_pre == "chatglm-bpe") { |
|
pre_type = LLAMA_VOCAB_PRE_TYPE_CHATGLM4; |
|
special_bos_id = LLAMA_TOKEN_NULL; |
|
} else if ( |
|
tokenizer_pre == "viking") { |
|
pre_type = LLAMA_VOCAB_PRE_TYPE_VIKING; |
|
clean_spaces = false; |
|
} else if ( |
|
tokenizer_pre == "jais") { |
|
pre_type = LLAMA_VOCAB_PRE_TYPE_JAIS; |
|
} else if ( |
|
tokenizer_pre == "tekken") { |
|
pre_type = LLAMA_VOCAB_PRE_TYPE_TEKKEN; |
|
clean_spaces = false; |
|
ignore_merges = true; |
|
add_bos = true; |
|
} else if ( |
|
tokenizer_pre == "smollm") { |
|
pre_type = LLAMA_VOCAB_PRE_TYPE_SMOLLM; |
|
clean_spaces = false; |
|
} else if ( |
|
tokenizer_pre == "codeshell") { |
|
pre_type = LLAMA_VOCAB_PRE_TYPE_CODESHELL; |
|
} else if ( |
|
tokenizer_pre == "bloom") { |
|
pre_type = LLAMA_VOCAB_PRE_TYPE_BLOOM; |
|
} else if ( |
|
tokenizer_pre == "gpt3-finnish") { |
|
pre_type = LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH; |
|
} else if ( |
|
tokenizer_pre == "exaone") { |
|
pre_type = LLAMA_VOCAB_PRE_TYPE_EXAONE; |
|
} else if ( |
|
tokenizer_pre == "chameleon") { |
|
pre_type = LLAMA_VOCAB_PRE_TYPE_CHAMELEON; |
|
add_bos = true; |
|
clean_spaces = false; |
|
} else if ( |
|
tokenizer_pre == "minerva-7b") { |
|
pre_type = LLAMA_VOCAB_PRE_TYPE_MINERVA; |
|
} else if ( |
|
tokenizer_pre == "megrez") { |
|
pre_type = LLAMA_VOCAB_PRE_TYPE_QWEN2; |
|
} else { |
|
throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str())); |
|
} |
|
} else if (type == LLAMA_VOCAB_TYPE_SPM) { |
|
pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT; |
|
add_space_prefix = true; |
|
clean_spaces = false; |
|
add_bos = true; |
|
add_eos = false; |
|
} else if (type == LLAMA_VOCAB_TYPE_WPM) { |
|
pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT; |
|
add_space_prefix = false; |
|
clean_spaces = true; |
|
add_bos = true; |
|
add_eos = false; |
|
} else if (type == LLAMA_VOCAB_TYPE_UGM) { |
|
pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT; |
|
add_bos = false; |
|
add_eos = true; |
|
} else if (type == LLAMA_VOCAB_TYPE_RWKV) { |
|
pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT; |
|
add_space_prefix = false; |
|
clean_spaces = false; |
|
add_bos = false; |
|
add_eos = false; |
|
} else { |
|
pre_type = LLAMA_VOCAB_PRE_TYPE_DEFAULT; |
|
} |
|
|
|
ml.get_key(LLM_KV_TOKENIZER_ADD_PREFIX, add_space_prefix, false); |
|
ml.get_key(LLM_KV_TOKENIZER_REMOVE_EXTRA_WS, remove_extra_whitespaces, false); |
|
} |
|
|
|
const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str()); |
|
if (token_idx == -1) { |
|
throw std::runtime_error("cannot find tokenizer vocab in model file\n"); |
|
} |
|
|
|
const float * scores = nullptr; |
|
const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str()); |
|
if (score_idx != -1) { |
|
scores = (const float * ) gguf_get_arr_data(ctx, score_idx); |
|
} |
|
|
|
const int * toktypes = nullptr; |
|
const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str()); |
|
if (toktype_idx != -1) { |
|
toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx); |
|
} |
|
|
|
uint32_t n_tokens = gguf_get_arr_n(ctx, token_idx); |
|
id_to_token.resize(n_tokens); |
|
|
|
for (uint32_t i = 0; i < n_tokens; i++) { |
|
std::string word = gguf_get_arr_str(ctx, token_idx, i); |
|
if (word.empty()) { |
|
LLAMA_LOG_WARN("%s: empty token at index %u\n", __func__, i); |
|
word = "[EMPTY_" + std::to_string(i) + "]"; |
|
} |
|
|
|
token_to_id[word] = i; |
|
max_token_len = std::max(max_token_len, (int) word.size()); |
|
|
|
auto & token_data = id_to_token[i]; |
|
token_data.text = std::move(word); |
|
token_data.score = scores ? scores[i] : 0.0f; |
|
token_data.attr = LLAMA_TOKEN_ATTR_NORMAL; |
|
|
|
if (toktypes) { |
|
switch(toktypes[i]) { |
|
case LLAMA_TOKEN_TYPE_UNKNOWN: token_data.attr = LLAMA_TOKEN_ATTR_UNKNOWN; break; |
|
case LLAMA_TOKEN_TYPE_UNUSED: token_data.attr = LLAMA_TOKEN_ATTR_UNUSED; break; |
|
case LLAMA_TOKEN_TYPE_NORMAL: token_data.attr = LLAMA_TOKEN_ATTR_NORMAL; break; |
|
case LLAMA_TOKEN_TYPE_CONTROL: token_data.attr = LLAMA_TOKEN_ATTR_CONTROL; break; |
|
case LLAMA_TOKEN_TYPE_USER_DEFINED: token_data.attr = LLAMA_TOKEN_ATTR_USER_DEFINED; break; |
|
case LLAMA_TOKEN_TYPE_BYTE: token_data.attr = LLAMA_TOKEN_ATTR_BYTE; break; |
|
case LLAMA_TOKEN_TYPE_UNDEFINED: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break; |
|
default: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break; |
|
} |
|
} |
|
} |
|
GGML_ASSERT(id_to_token.size() == token_to_id.size()); |
|
|
|
init_tokenizer(type); |
|
|
|
|
|
if (type == LLAMA_VOCAB_TYPE_SPM) { |
|
try { |
|
linefeed_id = vocab.byte_to_token('\n'); |
|
} catch (const std::exception & e) { |
|
LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what()); |
|
linefeed_id = special_pad_id; |
|
} |
|
} else if (type == LLAMA_VOCAB_TYPE_WPM) { |
|
linefeed_id = special_pad_id; |
|
} else if (type == LLAMA_VOCAB_TYPE_RWKV) { |
|
const std::vector<int> ids = tokenize("\n", false); |
|
GGML_ASSERT(!ids.empty() && "model vocab missing newline token"); |
|
linefeed_id = ids[0]; |
|
} else { |
|
const std::vector<int> ids = tokenize("\n", false); |
|
|
|
|
|
if (ids.empty()) { |
|
LLAMA_LOG_WARN("%s: model vocab missing newline token, using special_pad_id instead\n", __func__); |
|
linefeed_id = special_pad_id; |
|
} else { |
|
linefeed_id = ids[0]; |
|
} |
|
} |
|
|
|
|
|
{ |
|
const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = { |
|
{ LLM_KV_TOKENIZER_BOS_ID, special_bos_id }, |
|
{ LLM_KV_TOKENIZER_EOS_ID, special_eos_id }, |
|
{ LLM_KV_TOKENIZER_EOT_ID, special_eot_id }, |
|
{ LLM_KV_TOKENIZER_EOM_ID, special_eom_id }, |
|
{ LLM_KV_TOKENIZER_UNK_ID, special_unk_id }, |
|
{ LLM_KV_TOKENIZER_SEP_ID, special_sep_id }, |
|
{ LLM_KV_TOKENIZER_PAD_ID, special_pad_id }, |
|
{ LLM_KV_TOKENIZER_MASK_ID, special_mask_id }, |
|
{ LLM_KV_TOKENIZER_FIM_PRE_ID, special_fim_pre_id }, |
|
{ LLM_KV_TOKENIZER_FIM_SUF_ID, special_fim_suf_id }, |
|
{ LLM_KV_TOKENIZER_FIM_MID_ID, special_fim_mid_id }, |
|
{ LLM_KV_TOKENIZER_FIM_PAD_ID, special_fim_pad_id }, |
|
{ LLM_KV_TOKENIZER_FIM_REP_ID, special_fim_rep_id }, |
|
{ LLM_KV_TOKENIZER_FIM_SEP_ID, special_fim_sep_id }, |
|
|
|
|
|
{ LLM_KV_TOKENIZER_PREFIX_ID, special_fim_pre_id }, |
|
{ LLM_KV_TOKENIZER_SUFFIX_ID, special_fim_suf_id }, |
|
{ LLM_KV_TOKENIZER_MIDDLE_ID, special_fim_mid_id }, |
|
}; |
|
|
|
for (const auto & it : special_token_types) { |
|
const std::string & key = kv(std::get<0>(it)); |
|
int32_t & id = std::get<1>(it); |
|
|
|
uint32_t new_id; |
|
if (!ml.get_key(std::get<0>(it), new_id, false)) { |
|
continue; |
|
} |
|
if (new_id >= id_to_token.size()) { |
|
LLAMA_LOG_WARN("%s: bad special token: '%s' = %u, using default id %d\n", |
|
__func__, key.c_str(), new_id, id); |
|
} else { |
|
id = new_id; |
|
} |
|
} |
|
|
|
|
|
{ |
|
bool temp = true; |
|
|
|
if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) { |
|
add_bos = temp; |
|
} |
|
if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) { |
|
add_eos = temp; |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
for (const auto & t : token_to_id) { |
|
|
|
if (special_eot_id == LLAMA_TOKEN_NULL) { |
|
if (false |
|
|| t.first == "<|eot_id|>" |
|
|| t.first == "<|im_end|>" |
|
|| t.first == "<|end|>" |
|
|| t.first == "<end_of_turn>" |
|
|| t.first == "<|endoftext|>" |
|
|| t.first == "<EOT>" |
|
|| t.first == "<|end▁of▁sentence|>" |
|
) { |
|
special_eot_id = t.second; |
|
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) { |
|
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n", |
|
__func__, t.second, t.first.c_str()); |
|
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL; |
|
} |
|
} |
|
} |
|
|
|
|
|
if (special_eom_id == LLAMA_TOKEN_NULL) { |
|
if (false |
|
|| t.first == "<|eom_id|>" |
|
) { |
|
special_eom_id = t.second; |
|
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) { |
|
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n", |
|
__func__, t.second, t.first.c_str()); |
|
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL; |
|
} |
|
} |
|
} |
|
|
|
|
|
if (special_fim_pre_id == LLAMA_TOKEN_NULL) { |
|
if (false |
|
|| t.first == "<|fim_prefix|>" |
|
|| t.first == "<fim-prefix>" |
|
|| t.first == "<|fim▁begin|>" |
|
|| t.first == "<PRE>" |
|
) { |
|
special_fim_pre_id = t.second; |
|
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) { |
|
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n", |
|
__func__, t.second, t.first.c_str()); |
|
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL; |
|
} |
|
} |
|
} |
|
|
|
|
|
if (special_fim_suf_id == LLAMA_TOKEN_NULL) { |
|
if (false |
|
|| t.first == "<|fim_suffix|>" |
|
|| t.first == "<fim-suffix>" |
|
|| t.first == "<|fim▁hole|>" |
|
|| t.first == "<SUF>" |
|
) { |
|
special_fim_suf_id = t.second; |
|
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) { |
|
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n", |
|
__func__, t.second, t.first.c_str()); |
|
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL; |
|
} |
|
} |
|
} |
|
|
|
|
|
if (special_fim_mid_id == LLAMA_TOKEN_NULL) { |
|
if (false |
|
|| t.first == "<|fim_middle|>" |
|
|| t.first == "<fim-middle>" |
|
|| t.first == "<|fim▁end|>" |
|
|| t.first == "<MID>" |
|
) { |
|
special_fim_mid_id = t.second; |
|
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) { |
|
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n", |
|
__func__, t.second, t.first.c_str()); |
|
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL; |
|
} |
|
} |
|
} |
|
|
|
|
|
if (special_fim_pad_id == LLAMA_TOKEN_NULL) { |
|
if (false |
|
|| t.first == "<|fim_pad|>" |
|
|| t.first == "<fim-pad>" |
|
|| t.first == "<PAD>" |
|
) { |
|
special_fim_pad_id = t.second; |
|
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) { |
|
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n", |
|
__func__, t.second, t.first.c_str()); |
|
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL; |
|
} |
|
} |
|
} |
|
|
|
|
|
if (special_fim_rep_id == LLAMA_TOKEN_NULL) { |
|
if (false |
|
|| t.first == "<|fim_repo|>" |
|
|| t.first == "<|repo_name|>" |
|
|| t.first == "<fim-repo>" |
|
|| t.first == "<REPO>" |
|
) { |
|
special_fim_rep_id = t.second; |
|
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) { |
|
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n", |
|
__func__, t.second, t.first.c_str()); |
|
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL; |
|
} |
|
} |
|
} |
|
|
|
|
|
if (special_fim_sep_id == LLAMA_TOKEN_NULL) { |
|
if (false |
|
|| t.first == "<|file_sep|>" |
|
) { |
|
special_fim_sep_id = t.second; |
|
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) { |
|
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n", |
|
__func__, t.second, t.first.c_str()); |
|
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL; |
|
} |
|
} |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
special_eog_ids.clear(); |
|
|
|
if (special_fim_pad_id != LLAMA_TOKEN_NULL && special_eog_ids.count(special_fim_pad_id) == 0) { |
|
special_eog_ids.insert(special_fim_pad_id); |
|
} |
|
|
|
if (special_fim_rep_id != LLAMA_TOKEN_NULL && special_eog_ids.count(special_fim_rep_id) == 0) { |
|
special_eog_ids.insert(special_fim_rep_id); |
|
} |
|
|
|
if (special_fim_sep_id != LLAMA_TOKEN_NULL && special_eog_ids.count(special_fim_sep_id) == 0) { |
|
special_eog_ids.insert(special_fim_sep_id); |
|
} |
|
|
|
for (const auto & t : token_to_id) { |
|
if (false |
|
|| t.first == "<|eot_id|>" |
|
|| t.first == "<|im_end|>" |
|
|| t.first == "<|end|>" |
|
|| t.first == "<end_of_turn>" |
|
|| t.first == "<|endoftext|>" |
|
|| t.first == "<|eom_id|>" |
|
|| t.first == "<EOT>" |
|
) { |
|
special_eog_ids.insert(t.second); |
|
if ((id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL) == 0) { |
|
LLAMA_LOG_WARN("%s: control-looking token: %6d '%s' was not control-type; this is probably a bug in the model. its type will be overridden\n", |
|
__func__, t.second, t.first.c_str()); |
|
id_to_token[t.second].attr = LLAMA_TOKEN_ATTR_CONTROL; |
|
} |
|
} else { |
|
|
|
if (id_to_token[t.second].attr & LLAMA_TOKEN_ATTR_CONTROL && special_eog_ids.count(t.second) == 0) { |
|
LLAMA_LOG_DEBUG("%s: control token: %6d '%s' is not marked as EOG\n", |
|
__func__, t.second, t.first.c_str()); |
|
} |
|
} |
|
} |
|
|
|
|
|
if (special_eos_id != LLAMA_TOKEN_NULL && special_eog_ids.count(special_eos_id) == 0) { |
|
special_eog_ids.insert(special_eos_id); |
|
LLAMA_LOG_WARN("%s: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect\n", __func__); |
|
} |
|
|
|
if (special_eot_id != LLAMA_TOKEN_NULL && special_eog_ids.count(special_eot_id) == 0) { |
|
special_eog_ids.insert(special_eot_id); |
|
LLAMA_LOG_WARN("%s: special_eot_id is not in special_eog_ids - the tokenizer config may be incorrect\n", __func__); |
|
} |
|
|
|
if (special_eom_id != LLAMA_TOKEN_NULL && special_eog_ids.count(special_eom_id) == 0) { |
|
special_eog_ids.insert(special_eom_id); |
|
LLAMA_LOG_WARN("%s: special_eom_id is not in special_eog_ids - the tokenizer config may be incorrect\n", __func__); |
|
} |
|
} |
|
|
|
|
|
{ |
|
for (llama_token id = 0; id < (llama_token) n_tokens; ++id) { |
|
if (id_to_token[id].attr & (LLAMA_TOKEN_ATTR_CONTROL | LLAMA_TOKEN_ATTR_USER_DEFINED | LLAMA_TOKEN_ATTR_UNKNOWN)) { |
|
cache_special_tokens.push_back(id); |
|
} |
|
} |
|
|
|
std::sort(cache_special_tokens.begin(), cache_special_tokens.end(), |
|
[&] (const llama_token a, const llama_token b) { |
|
return id_to_token[a].text.size() > id_to_token[b].text.size(); |
|
} |
|
); |
|
|
|
LLAMA_LOG_INFO("%s: special tokens cache size = %u\n", __func__, (uint32_t) cache_special_tokens.size()); |
|
} |
|
|
|
|
|
{ |
|
size_t size_cache = 0; |
|
|
|
std::vector<std::string> cache(n_tokens); |
|
|
|
for (uint32_t id = 0; id < n_tokens; ++id) { |
|
cache[id] = token_to_piece_for_cache(id, true); |
|
|
|
size_cache += cache[id].size(); |
|
} |
|
|
|
std::swap(cache_token_to_piece, cache); |
|
|
|
LLAMA_LOG_INFO("%s: token to piece cache size = %.4f MB\n", __func__, size_cache / 1024.0 / 1024.0); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
{ |
|
auto _contains_any = [] (const std::string & str, const std::vector<std::string> & substrs) -> bool { |
|
for (const auto & substr : substrs) { |
|
if (str.find(substr) < std::string::npos) { |
|
return true; |
|
} |
|
} |
|
return false; |
|
}; |
|
|
|
auto _set_tokenid_attr = [&] (const llama_token id, llama_token_attr attr, bool value) { |
|
uint32_t current = id_to_token.at(id).attr; |
|
current = value ? (current | attr) : (current & ~attr); |
|
id_to_token[id].attr = (llama_token_attr) current; |
|
}; |
|
|
|
auto _set_token_attr = [&] (const std::string & token, llama_token_attr attr, bool value) { |
|
_set_tokenid_attr(token_to_id.at(token), attr, value); |
|
}; |
|
|
|
std::string model_name; |
|
std::string tokenizer_pre; |
|
|
|
ml.get_key(LLM_KV_GENERAL_NAME, model_name, false); |
|
ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false); |
|
|
|
|
|
std::transform(model_name.begin(), model_name.end(), model_name.begin(), |
|
[] (const std::string::value_type x) { |
|
return std::tolower(x); |
|
} |
|
); |
|
|
|
|
|
if (_contains_any(tokenizer_pre, {"jina-v2-de", "jina-v2-es", "jina-v2-code"})) { |
|
_set_token_attr("<mask>", LLAMA_TOKEN_ATTR_LSTRIP, true); |
|
} else if (_contains_any(model_name, {"phi-3", "phi3"})) { |
|
for (auto id : cache_special_tokens) { |
|
_set_tokenid_attr(id, LLAMA_TOKEN_ATTR_RSTRIP, true); |
|
} |
|
for (const auto * token : {"</s>"}) { |
|
_set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, true); |
|
} |
|
for (const auto * token : {"<unk>", "<s>", "<|endoftext|>"}) { |
|
_set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, false); |
|
} |
|
} |
|
} |
|
} |
|
|
|
enum llama_vocab_type llama_vocab::impl::get_type() const { |
|
return type; |
|
} |
|
|
|
std::string llama_vocab::impl::type_name() const{ |
|
switch (type) { |
|
case LLAMA_VOCAB_TYPE_NONE: return "no vocab"; |
|
case LLAMA_VOCAB_TYPE_SPM: return "SPM"; |
|
case LLAMA_VOCAB_TYPE_BPE: return "BPE"; |
|
case LLAMA_VOCAB_TYPE_WPM: return "WPM"; |
|
case LLAMA_VOCAB_TYPE_UGM: return "UGM"; |
|
case LLAMA_VOCAB_TYPE_RWKV: return "RWKV"; |
|
default: return "unknown"; |
|
} |
|
} |
|
|
|
bool llama_vocab::impl::is_normal(llama_token id) const { |
|
GGML_ASSERT(type != LLAMA_VOCAB_TYPE_NONE); |
|
return id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL; |
|
} |
|
|
|
bool llama_vocab::impl::is_unknown(llama_token id) const { |
|
GGML_ASSERT(type != LLAMA_VOCAB_TYPE_NONE); |
|
return id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNKNOWN; |
|
} |
|
|
|
bool llama_vocab::impl::is_control(llama_token id) const { |
|
GGML_ASSERT(type != LLAMA_VOCAB_TYPE_NONE); |
|
return id_to_token[id].attr & LLAMA_TOKEN_ATTR_CONTROL; |
|
} |
|
|
|
bool llama_vocab::impl::is_byte(llama_token id) const { |
|
GGML_ASSERT(type != LLAMA_VOCAB_TYPE_NONE); |
|
return id_to_token[id].attr & LLAMA_TOKEN_ATTR_BYTE; |
|
} |
|
|
|
bool llama_vocab::impl::is_user_defined(llama_token id) const { |
|
GGML_ASSERT(type != LLAMA_VOCAB_TYPE_NONE); |
|
return id_to_token[id].attr & LLAMA_TOKEN_ATTR_USER_DEFINED; |
|
} |
|
|
|
bool llama_vocab::impl::is_unused(llama_token id) const { |
|
GGML_ASSERT(type != LLAMA_VOCAB_TYPE_NONE); |
|
return id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNUSED; |
|
} |
|
|
|
bool llama_vocab::impl::is_eog(llama_token id) const { |
|
return id != LLAMA_TOKEN_NULL && special_eog_ids.count(id) > 0; |
|
} |
|
|
|
uint8_t llama_vocab::impl::token_to_byte(llama_token id) const { |
|
GGML_ASSERT(get_type() != LLAMA_VOCAB_TYPE_NONE); |
|
GGML_ASSERT(is_byte(id)); |
|
const auto & token_data = id_to_token.at(id); |
|
switch (get_type()) { |
|
case LLAMA_VOCAB_TYPE_SPM: |
|
case LLAMA_VOCAB_TYPE_UGM: { |
|
auto buf = token_data.text.substr(3, 2); |
|
return strtol(buf.c_str(), NULL, 16); |
|
} |
|
case LLAMA_VOCAB_TYPE_BPE: { |
|
GGML_ABORT("fatal error"); |
|
} |
|
case LLAMA_VOCAB_TYPE_WPM: { |
|
GGML_ABORT("fatal error"); |
|
} |
|
default: |
|
GGML_ABORT("fatal error"); |
|
} |
|
} |
|
|
|
llama_token_attr llama_vocab::impl::token_get_attr(llama_token id) const { |
|
GGML_ASSERT(type != LLAMA_VOCAB_TYPE_NONE); |
|
return id_to_token.at(id).attr; |
|
} |
|
|
|
void llama_vocab::impl::init_tokenizer(enum llama_vocab_type type) { |
|
LLAMA_LOG_DEBUG("%s: initializing tokenizer for type %d\n", __func__, type); |
|
|
|
switch (type) { |
|
case LLAMA_VOCAB_TYPE_SPM: |
|
tokenizer = std::make_unique<llm_tokenizer_spm>(vocab); |
|
break; |
|
case LLAMA_VOCAB_TYPE_BPE: |
|
tokenizer = std::make_unique<llm_tokenizer_bpe>(vocab); |
|
break; |
|
case LLAMA_VOCAB_TYPE_WPM: |
|
tokenizer = std::make_unique<llm_tokenizer_wpm>(vocab); |
|
break; |
|
case LLAMA_VOCAB_TYPE_UGM: |
|
tokenizer = std::make_unique<llm_tokenizer_ugm>(vocab, precompiled_charsmap); |
|
break; |
|
case LLAMA_VOCAB_TYPE_RWKV: |
|
tokenizer = std::make_unique<llm_tokenizer_rwkv>(vocab); |
|
break; |
|
default: |
|
GGML_ABORT("unsupported vocab type"); |
|
} |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void llama_vocab::impl::tokenizer_st_partition(std::forward_list<fragment_buffer_variant> & buffer, bool parse_special) const { |
|
|
|
for (const llama_token special_id : cache_special_tokens) { |
|
const auto & data = vocab.get_token_data(special_id); |
|
const auto & text = data.text; |
|
|
|
if (!parse_special && (data.attr & (LLAMA_TOKEN_ATTR_CONTROL | LLAMA_TOKEN_ATTR_UNKNOWN))) { |
|
|
|
continue; |
|
|
|
|
|
|
|
} |
|
|
|
|
|
std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin(); |
|
while (it != buffer.end()) { |
|
auto & fragment = (*it); |
|
|
|
|
|
if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { |
|
const auto & raw_text = fragment.raw_text; |
|
|
|
auto raw_text_base_offset = fragment.offset; |
|
auto raw_text_base_length = fragment.length; |
|
|
|
|
|
while (true) { |
|
|
|
|
|
|
|
auto match = raw_text.find(text, raw_text_base_offset); |
|
|
|
|
|
if (match == std::string::npos) break; |
|
|
|
|
|
if (match + text.length() > raw_text_base_offset + raw_text_base_length) break; |
|
|
|
#ifdef PRETOKENIZERDEBUG |
|
LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str()); |
|
#endif |
|
auto source = std::distance(buffer.begin(), it); |
|
|
|
|
|
|
|
if (match > raw_text_base_offset) { |
|
|
|
const int64_t left_reminder_offset = raw_text_base_offset + 0; |
|
int64_t left_reminder_length = match - raw_text_base_offset; |
|
|
|
if (data.attr & LLAMA_TOKEN_ATTR_LSTRIP) { |
|
while (left_reminder_length > 0 && isspace(raw_text[left_reminder_offset + left_reminder_length - 1])) { |
|
left_reminder_length--; |
|
} |
|
} |
|
|
|
if (left_reminder_length > 0) { |
|
buffer.emplace_after(it, raw_text, left_reminder_offset, left_reminder_length); |
|
it++; |
|
} |
|
|
|
#ifdef PRETOKENIZERDEBUG |
|
LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str()); |
|
#endif |
|
} |
|
|
|
|
|
buffer.emplace_after(it, special_id); |
|
it++; |
|
|
|
|
|
if (match + text.length() < raw_text_base_offset + raw_text_base_length) { |
|
int64_t right_reminder_offset = match + text.length(); |
|
int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + text.length()); |
|
|
|
if (data.attr & LLAMA_TOKEN_ATTR_RSTRIP) { |
|
while (right_reminder_length > 0 && isspace(raw_text[right_reminder_offset])) { |
|
right_reminder_offset++; |
|
right_reminder_length--; |
|
} |
|
} |
|
|
|
if (right_reminder_length > 0) { |
|
buffer.emplace_after(it, raw_text, right_reminder_offset, right_reminder_length); |
|
it++; |
|
} |
|
|
|
#ifdef PRETOKENIZERDEBUG |
|
LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str()); |
|
#endif |
|
|
|
if (source == 0) { |
|
buffer.erase_after(buffer.before_begin()); |
|
} else { |
|
buffer.erase_after(std::next(buffer.begin(), (source - 1))); |
|
} |
|
|
|
|
|
raw_text_base_offset = right_reminder_offset; |
|
raw_text_base_length = right_reminder_length; |
|
|
|
#ifdef PRETOKENIZERDEBUG |
|
LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str()); |
|
#endif |
|
} else { |
|
if (source == 0) { |
|
buffer.erase_after(buffer.before_begin()); |
|
} else { |
|
buffer.erase_after(std::next(buffer.begin(), (source - 1))); |
|
} |
|
break; |
|
} |
|
} |
|
} |
|
it++; |
|
} |
|
} |
|
} |
|
|
|
|
|
std::string llama_vocab::impl::token_to_piece_for_cache(llama_token token, bool special) const { |
|
std::string piece; |
|
piece.resize(piece.capacity()); |
|
const int n_chars = vocab.token_to_piece(token, &piece[0], piece.size(), 0, special); |
|
if (n_chars < 0) { |
|
piece.resize(-n_chars); |
|
int check = vocab.token_to_piece(token, &piece[0], piece.size(), 0, special); |
|
GGML_ASSERT(check == -n_chars); |
|
} |
|
else { |
|
piece.resize(n_chars); |
|
} |
|
|
|
return piece; |
|
} |
|
|
|
static void llama_escape_whitespace(std::string & text) { |
|
replace_all(text, " ", "\xe2\x96\x81"); |
|
} |
|
|
|
static void llama_unescape_whitespace(std::string & word) { |
|
replace_all(word, "\xe2\x96\x81", " "); |
|
} |
|
|
|
static std::string llama_decode_text(const std::string & text) { |
|
std::string decoded_text; |
|
|
|
const auto cpts = unicode_cpts_from_utf8(text); |
|
for (const auto cpt : cpts) { |
|
const auto utf8 = unicode_cpt_to_utf8(cpt); |
|
try { |
|
decoded_text += unicode_utf8_to_byte(utf8); |
|
} catch (const std::out_of_range & ) { |
|
decoded_text += "[UNK_BYTE_0x"; |
|
for (const auto c : utf8) { |
|
decoded_text += format("%02x", (uint8_t) c); |
|
} |
|
decoded_text += text + "]"; |
|
} |
|
} |
|
|
|
return decoded_text; |
|
} |
|
|
|
std::vector<llama_token> llama_vocab::impl::tokenize( |
|
const std::string & raw_text, |
|
bool add_special, |
|
bool parse_special) const { |
|
GGML_ASSERT(tokenizer && "Tokenizer not initialized. Call llama_vocab::init_tokenizer() first."); |
|
|
|
std::vector<llama_token> output; |
|
std::forward_list<fragment_buffer_variant> fragment_buffer; |
|
|
|
if (!raw_text.empty()) { |
|
fragment_buffer.emplace_front(raw_text, 0, raw_text.length()); |
|
tokenizer_st_partition(fragment_buffer, parse_special); |
|
} |
|
|
|
switch (get_type()) { |
|
case LLAMA_VOCAB_TYPE_SPM: |
|
{ |
|
|
|
|
|
|
|
|
|
|
|
bool is_prev_special = true; |
|
|
|
if (add_special && add_bos) { |
|
GGML_ASSERT(special_bos_id != LLAMA_TOKEN_NULL); |
|
output.push_back(special_bos_id); |
|
is_prev_special = true; |
|
} |
|
|
|
for (const auto & fragment : fragment_buffer) { |
|
if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { |
|
std::string text; |
|
|
|
|
|
if (add_space_prefix && is_prev_special) { |
|
text = ' '; |
|
} |
|
|
|
text += fragment.raw_text.substr(fragment.offset, fragment.length); |
|
|
|
#ifdef PRETOKENIZERDEBUG |
|
LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", text.length(), fragment.offset, fragment.length, text.c_str()); |
|
#endif |
|
llama_escape_whitespace(text); |
|
llm_tokenizer_spm_session session(vocab); |
|
session.tokenize(text, output); |
|
is_prev_special = false; |
|
} else { |
|
output.push_back(fragment.token); |
|
is_prev_special = true; |
|
} |
|
} |
|
|
|
if (add_special && add_bos && output.size() >= 2 && output[1] == special_bos_id) { |
|
LLAMA_LOG_WARN( |
|
"%s: Added a BOS token to the prompt as specified by the model but the prompt " |
|
"also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. " |
|
"Are you sure this is what you want?\n", __FUNCTION__); |
|
} |
|
|
|
if (add_special && add_eos) { |
|
GGML_ASSERT(special_eos_id != LLAMA_TOKEN_NULL); |
|
output.push_back(special_eos_id); |
|
} |
|
} break; |
|
case LLAMA_VOCAB_TYPE_BPE: |
|
{ |
|
llm_tokenizer_bpe_session session(vocab, *static_cast<const llm_tokenizer_bpe *>(tokenizer.get())); |
|
|
|
|
|
if (add_special) { |
|
session.append_bos(output); |
|
} |
|
for (const auto & fragment : fragment_buffer) { |
|
if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { |
|
std::string text = fragment.raw_text.substr(fragment.offset, fragment.length); |
|
|
|
#ifdef PRETOKENIZERDEBUG |
|
LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", text.length(), fragment.offset, fragment.length, text.c_str()); |
|
#endif |
|
session.tokenize(text, output); |
|
} else { |
|
session.append(fragment.token, output); |
|
} |
|
} |
|
|
|
if (add_special) { |
|
session.append_eos(output); |
|
session.check_double_bos_eos(output); |
|
} |
|
} break; |
|
case LLAMA_VOCAB_TYPE_WPM: |
|
{ |
|
if (add_special) { |
|
GGML_ASSERT(special_bos_id != LLAMA_TOKEN_NULL); |
|
output.push_back(special_bos_id); |
|
} |
|
|
|
llm_tokenizer_wpm_session session(vocab); |
|
|
|
for (const auto & fragment : fragment_buffer) { |
|
if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { |
|
std::string text = fragment.raw_text.substr(fragment.offset, fragment.length); |
|
|
|
#ifdef PRETOKENIZERDEBUG |
|
LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", text.length(), fragment.offset, fragment.length, text.c_str()); |
|
#endif |
|
session.tokenize(text, output); |
|
} else { |
|
output.push_back(fragment.token); |
|
} |
|
} |
|
|
|
if (add_special) { |
|
GGML_ASSERT(special_sep_id != LLAMA_TOKEN_NULL); |
|
output.push_back(special_sep_id); |
|
} |
|
} break; |
|
case LLAMA_VOCAB_TYPE_UGM: |
|
{ |
|
if (add_special && add_bos) { |
|
GGML_ASSERT(special_bos_id != LLAMA_TOKEN_NULL); |
|
output.push_back(special_bos_id); |
|
} |
|
llm_tokenizer_ugm_session session(vocab, *static_cast<const llm_tokenizer_ugm *>(tokenizer.get())); |
|
|
|
for (const auto & fragment : fragment_buffer) { |
|
if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { |
|
std::string text = fragment.raw_text.substr(fragment.offset, fragment.length); |
|
#ifdef PRETOKENIZERDEBUG |
|
LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", text.length(), fragment.offset, fragment.length, text.c_str()); |
|
#endif |
|
session.tokenize(text, output); |
|
} else { |
|
output.push_back(fragment.token); |
|
} |
|
} |
|
|
|
if (add_special && add_bos && output.size() >= 2 && output[1] == special_bos_id) { |
|
LLAMA_LOG_WARN( |
|
"%s: Added a BOS token to the prompt as specified by the model but the prompt " |
|
"also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. " |
|
"Are you sure this is what you want?\n", __FUNCTION__); |
|
} |
|
|
|
if (add_special && add_eos) { |
|
GGML_ASSERT(special_eos_id != LLAMA_TOKEN_NULL); |
|
output.push_back(special_eos_id); |
|
} |
|
} break; |
|
case LLAMA_VOCAB_TYPE_RWKV: |
|
{ |
|
llm_tokenizer_rwkv_session session(vocab, *static_cast<const llm_tokenizer_rwkv *>(tokenizer.get())); |
|
for (const auto & fragment : fragment_buffer) { |
|
if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { |
|
std::string text = fragment.raw_text.substr(fragment.offset, fragment.length); |
|
|
|
#ifdef PRETOKENIZERDEBUG |
|
LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", text.length(), fragment.offset, fragment.length, text.c_str()); |
|
#endif |
|
|
|
session.tokenize(text, output); |
|
} else { |
|
output.push_back(fragment.token); |
|
} |
|
} |
|
} break; |
|
case LLAMA_VOCAB_TYPE_NONE: |
|
GGML_ABORT("fatal error"); |
|
} |
|
|
|
return output; |
|
} |
|
|
|
int32_t llama_vocab::impl::token_to_piece(llama_token token, char * buf, int32_t length, int32_t lstrip, bool special) const { |
|
|
|
static const int attr_special = LLAMA_TOKEN_ATTR_UNKNOWN | LLAMA_TOKEN_ATTR_CONTROL; |
|
const llama_token_attr attr = token_get_attr(token); |
|
if (!special && (attr & attr_special)) { |
|
return 0; |
|
} |
|
|
|
|
|
|
|
auto _try_copy = [=] (const char * token, size_t size) -> int32_t { |
|
for (int32_t i = 0; i < lstrip && size && *token == ' '; ++i) { |
|
token++; |
|
size--; |
|
} |
|
if (length < (int32_t)size) { |
|
return -(int32_t) size; |
|
} |
|
memcpy(buf, token, size); |
|
return (int32_t) size; |
|
}; |
|
|
|
|
|
{ |
|
const auto & cache = cache_token_to_piece; |
|
|
|
if (!cache.empty()) { |
|
const auto & result = cache.at(token); |
|
return _try_copy(result.data(), result.size()); |
|
} |
|
} |
|
|
|
if (0 <= token && token < (int32_t) id_to_token.size()) { |
|
const std::string & token_text = id_to_token[token].text; |
|
switch (get_type()) { |
|
case LLAMA_VOCAB_TYPE_WPM: |
|
case LLAMA_VOCAB_TYPE_SPM: |
|
case LLAMA_VOCAB_TYPE_UGM: { |
|
|
|
|
|
if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) { |
|
return _try_copy(token_text.data(), token_text.size()); |
|
} |
|
if (attr & LLAMA_TOKEN_ATTR_NORMAL) { |
|
std::string result = token_text; |
|
llama_unescape_whitespace(result); |
|
return _try_copy(result.data(), result.size()); |
|
} |
|
if (attr & LLAMA_TOKEN_ATTR_BYTE) { |
|
char byte = (char) token_to_byte(token); |
|
return _try_copy((char*) &byte, 1); |
|
} |
|
break; |
|
} |
|
case LLAMA_VOCAB_TYPE_BPE: { |
|
|
|
|
|
if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) { |
|
return _try_copy(token_text.data(), token_text.size()); |
|
} |
|
if (attr & LLAMA_TOKEN_ATTR_NORMAL) { |
|
std::string result = llama_decode_text(token_text); |
|
return _try_copy(result.data(), result.size()); |
|
} |
|
break; |
|
} |
|
case LLAMA_VOCAB_TYPE_RWKV: { |
|
std::vector<uint8_t> result = llama_unescape_rwkv_token(token_text); |
|
|
|
|
|
if (result.size() > (size_t)length) { |
|
return -(int)result.size(); |
|
} |
|
|
|
memcpy(buf, result.data(), result.size()); |
|
return (int)result.size(); |
|
} |
|
default: |
|
GGML_ABORT("fatal error"); |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
const std::string & llama_vocab::impl::token_to_piece(llama_token token) const { |
|
return cache_token_to_piece.at(token); |
|
} |
|
|
|
int32_t llama_vocab::impl::detokenize( |
|
const llama_token * tokens, |
|
int32_t n_tokens, |
|
char * text, |
|
int32_t text_len_max, |
|
bool remove_special, |
|
bool unparse_special) const { |
|
if (type == LLAMA_VOCAB_TYPE_NONE) { |
|
return 0; |
|
} |
|
|
|
GGML_ASSERT(tokenizer && "Tokenizer not initialized. Call llama_vocab::init_tokenizer() first."); |
|
|
|
int32_t avail = text_len_max; |
|
int32_t total = 0; |
|
|
|
|
|
bool remove_space = add_space_prefix; |
|
|
|
if (remove_special && add_bos) { |
|
if (n_tokens > 0 && tokens[0] == special_bos_id) { |
|
remove_space = false; |
|
n_tokens--; |
|
tokens++; |
|
} |
|
} |
|
|
|
if (remove_special && add_eos) { |
|
if (n_tokens > 0 && tokens[n_tokens - 1] == special_eos_id) { |
|
n_tokens--; |
|
} |
|
} |
|
|
|
for (int32_t i = 0; i < n_tokens; ++i) { |
|
GGML_ASSERT(avail >= 0); |
|
int32_t n_chars = token_to_piece(tokens[i], text, avail, remove_space, unparse_special); |
|
remove_space = false; |
|
if (n_chars < 0) { |
|
avail = 0; |
|
total -= n_chars; |
|
} else if (n_chars > 0) { |
|
avail -= n_chars; |
|
text += n_chars; |
|
total += n_chars; |
|
} |
|
} |
|
|
|
if (total > text_len_max) { |
|
return -total; |
|
} |
|
|
|
if (clean_spaces) { |
|
text -= total; |
|
|
|
|
|
const int32_t total1 = total; |
|
total = total ? 1 : 0; |
|
for (int32_t i = 1; i < total1; ++i) { |
|
const char x = text[i]; |
|
if (text[i - 1] == ' ') { |
|
if (x == '?' || x == '!' || x == '.' || x == ',') { |
|
total--; |
|
} |
|
} |
|
text[total++] = x; |
|
} |
|
|
|
|
|
const int32_t total2 = total; |
|
total = total ? 1 : 0; |
|
for (int32_t i = 1; i < total2; ++i) { |
|
const char x = text[i]; |
|
if (x == '\'' && i + 1 < total2 && text[i - 1] == ' ' && text[i + 1] == ' ') { |
|
total--; |
|
text[++i] = '\0'; |
|
} |
|
text[total++] = x; |
|
} |
|
|
|
|
|
const int32_t total3 = total; |
|
total = total ? 1 : 0; |
|
for (int32_t i = 1; i < total3; ++i) { |
|
const char x = text[i]; |
|
if (text[i - 1] == ' ') { |
|
if (x == '\'' && i + 1 < total3) { |
|
const char x1 = text[i + 1]; |
|
if (x1 == 't' || x1 == 'd') { |
|
|
|
} else if (x1 == 's' || x1 == 'm') { |
|
total--; |
|
} else if (i + 2 < total3) { |
|
const char x2 = text[i + 2]; |
|
if ((x1 == 'l' && x2 == 'l')) { |
|
|
|
} else if ((x1 == 'r' && x2 == 'e') || (x1 == 'v' && x2 == 'e')) { |
|
total--; |
|
} else { |
|
|
|
} |
|
} else { |
|
|
|
} |
|
} |
|
} |
|
text[total++] = x; |
|
} |
|
} |
|
|
|
return total <= text_len_max ? total : -total; |
|
} |
|
|
|
void llama_vocab::impl::print_info() const { |
|
LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, type_name().c_str()); |
|
LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, vocab.n_tokens()); |
|
LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (uint32_t) bpe_ranks.size()); |
|
|
|
|
|
if (special_bos_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, special_bos_id, id_to_token[special_bos_id].text.c_str() ); } |
|
if (special_eos_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, special_eos_id, id_to_token[special_eos_id].text.c_str() ); } |
|
if (special_eot_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, special_eot_id, id_to_token[special_eot_id].text.c_str() ); } |
|
if (special_eom_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: EOM token = %d '%s'\n", __func__, special_eom_id, id_to_token[special_eom_id].text.c_str() ); } |
|
if (special_unk_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, special_unk_id, id_to_token[special_unk_id].text.c_str() ); } |
|
if (special_sep_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, special_sep_id, id_to_token[special_sep_id].text.c_str() ); } |
|
if (special_pad_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, special_pad_id, id_to_token[special_pad_id].text.c_str() ); } |
|
if (special_mask_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, special_mask_id, id_to_token[special_mask_id].text.c_str() ); } |
|
|
|
if (linefeed_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, linefeed_id, id_to_token[linefeed_id].text.c_str() ); } |
|
|
|
if (special_fim_pre_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM PRE token = %d '%s'\n", __func__, special_fim_pre_id, id_to_token[special_fim_pre_id].text.c_str() ); } |
|
if (special_fim_suf_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM SUF token = %d '%s'\n", __func__, special_fim_suf_id, id_to_token[special_fim_suf_id].text.c_str() ); } |
|
if (special_fim_mid_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM MID token = %d '%s'\n", __func__, special_fim_mid_id, id_to_token[special_fim_mid_id].text.c_str() ); } |
|
if (special_fim_pad_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM PAD token = %d '%s'\n", __func__, special_fim_pad_id, id_to_token[special_fim_pad_id].text.c_str() ); } |
|
if (special_fim_rep_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM REP token = %d '%s'\n", __func__, special_fim_rep_id, id_to_token[special_fim_rep_id].text.c_str() ); } |
|
if (special_fim_sep_id != LLAMA_TOKEN_NULL) { LLAMA_LOG_INFO( "%s: FIM SEP token = %d '%s'\n", __func__, special_fim_sep_id, id_to_token[special_fim_sep_id].text.c_str() ); } |
|
|
|
for (const auto & id : special_eog_ids) { |
|
LLAMA_LOG_INFO( "%s: EOG token = %d '%s'\n", __func__, id, id_to_token[id].text.c_str() ); |
|
} |
|
|
|
LLAMA_LOG_INFO("%s: max token length = %d\n", __func__, max_token_len); |
|
} |
|
|
|
llama_vocab::llama_vocab() : pimpl(new impl(*this)) { |
|
} |
|
|
|
llama_vocab::~llama_vocab() { |
|
} |
|
|
|
void llama_vocab::load(llama_model_loader & ml, const LLM_KV & kv) { |
|
pimpl->load(ml, kv); |
|
} |
|
|
|
enum llama_vocab_type llama_vocab::get_type() const { |
|
return pimpl->type; |
|
} |
|
|
|
enum llama_vocab_pre_type llama_vocab::get_pre_type() const { |
|
return pimpl->pre_type; |
|
} |
|
|
|
uint32_t llama_vocab::n_tokens() const { |
|
return (uint32_t) pimpl->id_to_token.size(); |
|
} |
|
|
|
uint32_t llama_vocab::n_token_types() const { |
|
return (uint32_t) pimpl->n_token_types; |
|
} |
|
|
|
std::string llama_vocab::type_name() const{ |
|
return pimpl->type_name(); |
|
} |
|
|
|
bool llama_vocab::is_normal(llama_token id) const { |
|
return pimpl->is_normal(id); |
|
} |
|
|
|
bool llama_vocab::is_unknown(llama_token id) const { |
|
return pimpl->is_unknown(id); |
|
} |
|
|
|
bool llama_vocab::is_control(llama_token id) const { |
|
return pimpl->is_control(id); |
|
} |
|
|
|
bool llama_vocab::is_byte(llama_token id) const { |
|
return pimpl->is_byte(id); |
|
} |
|
|
|
bool llama_vocab::is_user_defined(llama_token id) const { |
|
return pimpl->is_user_defined(id); |
|
} |
|
|
|
bool llama_vocab::is_unused(llama_token id) const { |
|
return pimpl->is_unused(id); |
|
} |
|
|
|
bool llama_vocab::is_eog(llama_token id) const { |
|
return pimpl->is_eog(id); |
|
} |
|
|
|
uint8_t llama_vocab::token_to_byte(llama_token id) const { |
|
return pimpl->token_to_byte(id); |
|
} |
|
|
|
llama_token llama_vocab::byte_to_token(uint8_t ch) const { |
|
GGML_ASSERT(get_type() != LLAMA_VOCAB_TYPE_NONE); |
|
static const char * hex = "0123456789ABCDEF"; |
|
switch (get_type()) { |
|
case LLAMA_VOCAB_TYPE_SPM: |
|
case LLAMA_VOCAB_TYPE_UGM: { |
|
const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 }; |
|
auto token = pimpl->token_to_id.find(buf); |
|
if (token != pimpl->token_to_id.end()) { |
|
return (*token).second; |
|
} |
|
|
|
const char buf2[2] = { (char)ch, 0 }; |
|
return pimpl->token_to_id.at(buf2); |
|
} |
|
case LLAMA_VOCAB_TYPE_WPM: |
|
case LLAMA_VOCAB_TYPE_BPE: { |
|
return pimpl->token_to_id.at(unicode_byte_to_utf8(ch)); |
|
} |
|
default: |
|
GGML_ABORT("fatal error"); |
|
} |
|
} |
|
|
|
llama_token llama_vocab::text_to_token(const std::string & text) const { |
|
GGML_ASSERT(pimpl->type != LLAMA_VOCAB_TYPE_NONE); |
|
auto it = pimpl->token_to_id.find(text); |
|
if (it != pimpl->token_to_id.end()) { |
|
return (*it).second; |
|
} |
|
return LLAMA_TOKEN_NULL; |
|
} |
|
|
|
const llama_vocab::token_data & llama_vocab::get_token_data(llama_token id) const { |
|
GGML_ASSERT(pimpl->type != LLAMA_VOCAB_TYPE_NONE); |
|
return pimpl->id_to_token.at(id); |
|
} |
|
|
|
const char * llama_vocab::token_get_text(llama_token id) const { |
|
GGML_ASSERT(pimpl->type != LLAMA_VOCAB_TYPE_NONE); |
|
return pimpl->id_to_token.at(id).text.c_str(); |
|
} |
|
|
|
float llama_vocab::token_get_score(llama_token id) const { |
|
GGML_ASSERT(pimpl->type != LLAMA_VOCAB_TYPE_NONE); |
|
return pimpl->id_to_token.at(id).score; |
|
} |
|
|
|
llama_token_attr llama_vocab::token_get_attr(llama_token id) const { |
|
return pimpl->token_get_attr(id); |
|
} |
|
|
|
llama_token llama_vocab::token_bos() const { |
|
return pimpl->special_bos_id; |
|
} |
|
|
|
llama_token llama_vocab::token_eos() const { |
|
return pimpl->special_eos_id; |
|
} |
|
|
|
llama_token llama_vocab::token_eot() const { |
|
return pimpl->special_eot_id; |
|
} |
|
|
|
llama_token llama_vocab::token_eom() const { |
|
return pimpl->special_eom_id; |
|
} |
|
|
|
llama_token llama_vocab::token_unk() const { |
|
return pimpl->special_unk_id; |
|
} |
|
|
|
llama_token llama_vocab::token_sep() const { |
|
return pimpl->special_sep_id; |
|
} |
|
|
|
llama_token llama_vocab::token_nl() const { |
|
return pimpl->linefeed_id; |
|
} |
|
|
|
llama_token llama_vocab::token_pad() const { |
|
return pimpl->special_pad_id; |
|
} |
|
|
|
llama_token llama_vocab::token_prefix() const { |
|
return pimpl->special_fim_pre_id; |
|
} |
|
|
|
llama_token llama_vocab::token_middle() const { |
|
return pimpl->special_fim_mid_id; |
|
} |
|
|
|
llama_token llama_vocab::token_suffix() const { |
|
return pimpl->special_fim_suf_id; |
|
} |
|
|
|
llama_token llama_vocab::token_fim_pre() const { |
|
return pimpl->special_fim_pre_id; |
|
} |
|
|
|
llama_token llama_vocab::token_fim_suf() const { |
|
return pimpl->special_fim_suf_id; |
|
} |
|
|
|
llama_token llama_vocab::token_fim_mid() const { |
|
return pimpl->special_fim_mid_id; |
|
} |
|
|
|
llama_token llama_vocab::token_fim_pad() const { |
|
return pimpl->special_fim_pad_id; |
|
} |
|
|
|
llama_token llama_vocab::token_fim_rep() const { |
|
return pimpl->special_fim_rep_id; |
|
} |
|
|
|
llama_token llama_vocab::token_fim_sep() const { |
|
return pimpl->special_fim_sep_id; |
|
} |
|
|
|
bool llama_vocab::get_add_space_prefix() const { |
|
return pimpl->add_space_prefix; |
|
} |
|
|
|
bool llama_vocab::get_add_bos() const { |
|
return pimpl->add_bos; |
|
} |
|
|
|
bool llama_vocab::get_add_eos() const { |
|
return pimpl->add_eos; |
|
} |
|
|
|
bool llama_vocab::get_ignore_merges() const { |
|
return pimpl->ignore_merges; |
|
} |
|
|
|
bool llama_vocab::get_clean_spaces() const { |
|
return pimpl->clean_spaces; |
|
} |
|
|
|
bool llama_vocab::get_remove_extra_whitespaces() const { |
|
return pimpl->remove_extra_whitespaces; |
|
} |
|
|
|
bool llama_vocab::get_escape_whitespaces() const { |
|
return pimpl->escape_whitespaces; |
|
} |
|
|
|
bool llama_vocab::get_treat_whitespace_as_suffix() const { |
|
return pimpl->treat_whitespace_as_suffix; |
|
} |
|
|
|
int llama_vocab::max_token_len() const { |
|
return pimpl->max_token_len; |
|
} |
|
|
|
int llama_vocab::find_bpe_rank(const std::string & token_left, const std::string & token_right) const { |
|
GGML_ASSERT(token_left.find(' ') == std::string::npos); |
|
GGML_ASSERT(token_left.find('\n') == std::string::npos); |
|
GGML_ASSERT(token_right.find(' ') == std::string::npos); |
|
GGML_ASSERT(token_right.find('\n') == std::string::npos); |
|
|
|
auto it = pimpl->bpe_ranks.find(std::make_pair(token_left, token_right)); |
|
if (it == pimpl->bpe_ranks.end()) { |
|
return -1; |
|
} |
|
|
|
return it->second; |
|
} |
|
|
|
int32_t llama_vocab::tokenize( |
|
const char * text, |
|
int32_t text_len, |
|
llama_token * tokens, |
|
int32_t n_tokens_max, |
|
bool add_special, |
|
bool parse_special) const { |
|
auto res = tokenize(std::string(text, text_len), add_special, parse_special); |
|
if (n_tokens_max < (int) res.size()) { |
|
|
|
return -((int) res.size()); |
|
} |
|
|
|
for (size_t i = 0; i < res.size(); i++) { |
|
tokens[i] = res[i]; |
|
} |
|
|
|
return res.size(); |
|
} |
|
|
|
std::vector<llama_token> llama_vocab::tokenize( |
|
const std::string & raw_text, |
|
bool add_special, |
|
bool parse_special) const { |
|
return pimpl->tokenize(raw_text, add_special, parse_special); |
|
} |
|
|
|
const std::string & llama_vocab::token_to_piece(llama_token token) const { |
|
return pimpl->token_to_piece(token); |
|
} |
|
|
|
int32_t llama_vocab::token_to_piece(llama_token token, char * buf, int32_t length, int32_t lstrip, bool special) const { |
|
return pimpl->token_to_piece(token, buf, length, lstrip, special); |
|
} |
|
|
|
int32_t llama_vocab::detokenize( |
|
const llama_token * tokens, |
|
int32_t n_tokens, |
|
char * text, |
|
int32_t text_len_max, |
|
bool remove_special, |
|
bool unparse_special) const { |
|
return pimpl->detokenize(tokens, n_tokens, text, text_len_max, remove_special, unparse_special); |
|
} |
|
|
|
std::string llama_vocab::detokenize(const std::vector<llama_token> & tokens, bool special) const { |
|
std::string text; |
|
text.resize(std::max(text.capacity(), tokens.size())); |
|
int32_t n_chars = detokenize(tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special); |
|
if (n_chars < 0) { |
|
text.resize(-n_chars); |
|
n_chars = detokenize(tokens.data(), (int32_t)tokens.size(), &text[0], (int32_t)text.size(), false, special); |
|
GGML_ASSERT(n_chars <= (int32_t)text.size()); |
|
} |
|
|
|
text.resize(n_chars); |
|
|
|
|
|
return text; |
|
} |
|
|
|
void llama_vocab::print_info() const { |
|
pimpl->print_info(); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
int32_t llama_vocab_n_tokens(const struct llama_vocab * vocab) { |
|
return vocab->n_tokens(); |
|
} |
|
|
|
|
|
int32_t llama_n_vocab(const struct llama_vocab * vocab) { |
|
return llama_vocab_n_tokens(vocab); |
|
} |
|
|
|
enum llama_vocab_type llama_vocab_type(const struct llama_vocab * vocab) { |
|
return vocab->get_type(); |
|
} |
|
|
|
const char * llama_vocab_get_text(const struct llama_vocab * vocab, llama_token token) { |
|
return vocab->token_get_text(token); |
|
} |
|
|
|
float llama_vocab_get_score(const struct llama_vocab * vocab, llama_token token) { |
|
return vocab->token_get_score(token); |
|
} |
|
|
|
enum llama_token_attr llama_vocab_get_attr(const struct llama_vocab * vocab, llama_token token) { |
|
return vocab->token_get_attr(token); |
|
} |
|
|
|
bool llama_vocab_is_eog(const struct llama_vocab * vocab, llama_token token) { |
|
return vocab->is_eog(token); |
|
} |
|
|
|
bool llama_vocab_is_control(const struct llama_vocab * vocab, llama_token token) { |
|
return vocab->is_control(token); |
|
} |
|
|
|
llama_token llama_vocab_bos(const struct llama_vocab * vocab) { |
|
return vocab->token_bos(); |
|
} |
|
|
|
llama_token llama_vocab_eos(const struct llama_vocab * vocab) { |
|
return vocab->token_eos(); |
|
} |
|
|
|
llama_token llama_vocab_eot(const struct llama_vocab * vocab) { |
|
return vocab->token_eot(); |
|
} |
|
|
|
|
|
llama_token llama_vocab_cls(const struct llama_vocab * vocab) { |
|
return vocab->token_bos(); |
|
} |
|
|
|
llama_token llama_vocab_sep(const struct llama_vocab * vocab) { |
|
return vocab->token_sep(); |
|
} |
|
|
|
llama_token llama_vocab_nl (const struct llama_vocab * vocab) { |
|
return vocab->token_nl(); |
|
} |
|
|
|
llama_token llama_vocab_pad(const struct llama_vocab * vocab) { |
|
return vocab->token_pad(); |
|
} |
|
|
|
bool llama_vocab_get_add_bos(const struct llama_vocab * vocab) { |
|
return vocab->get_add_bos(); |
|
} |
|
|
|
bool llama_vocab_get_add_eos(const struct llama_vocab * vocab) { |
|
return vocab->get_add_eos(); |
|
} |
|
|
|
llama_token llama_vocab_fim_pre(const struct llama_vocab * vocab) { |
|
return vocab->token_fim_pre(); |
|
} |
|
|
|
llama_token llama_vocab_fim_suf(const struct llama_vocab * vocab) { |
|
return vocab->token_fim_suf(); |
|
} |
|
|
|
llama_token llama_vocab_fim_mid(const struct llama_vocab * vocab) { |
|
return vocab->token_fim_mid(); |
|
} |
|
|
|
llama_token llama_vocab_fim_pad(const struct llama_vocab * vocab) { |
|
return vocab->token_fim_pad(); |
|
} |
|
|
|
llama_token llama_vocab_fim_rep(const struct llama_vocab * vocab) { |
|
return vocab->token_fim_rep(); |
|
} |
|
|
|
llama_token llama_vocab_fim_sep(const struct llama_vocab * vocab) { |
|
return vocab->token_fim_sep(); |
|
} |
|
|
|
|
|
const char * llama_token_get_text(const struct llama_vocab * vocab, llama_token token) { |
|
return llama_vocab_get_text(vocab, token); |
|
} |
|
|
|
|
|
float llama_token_get_score(const struct llama_vocab * vocab, llama_token token) { |
|
return llama_vocab_get_score(vocab, token); |
|
} |
|
|
|
|
|
enum llama_token_attr llama_token_get_attr(const struct llama_vocab * vocab, llama_token token) { |
|
return llama_vocab_get_attr(vocab, token); |
|
} |
|
|
|
|
|
bool llama_token_is_eog(const struct llama_vocab * vocab, llama_token token) { |
|
return llama_vocab_is_eog(vocab, token); |
|
} |
|
|
|
|
|
bool llama_token_is_control(const struct llama_vocab * vocab, llama_token token) { |
|
return llama_vocab_is_control(vocab, token); |
|
} |
|
|
|
|
|
llama_token llama_token_bos(const struct llama_vocab * vocab) { |
|
return llama_vocab_bos(vocab); |
|
} |
|
|
|
|
|
llama_token llama_token_eos(const struct llama_vocab * vocab) { |
|
return llama_vocab_eos(vocab); |
|
} |
|
|
|
|
|
llama_token llama_token_eot(const struct llama_vocab * vocab) { |
|
return llama_vocab_eot(vocab); |
|
} |
|
|
|
|
|
llama_token llama_token_cls(const struct llama_vocab * vocab) { |
|
|
|
return llama_vocab_bos(vocab); |
|
} |
|
|
|
|
|
llama_token llama_token_sep(const struct llama_vocab * vocab) { |
|
return llama_vocab_sep(vocab); |
|
} |
|
|
|
|
|
llama_token llama_token_nl (const struct llama_vocab * vocab) { |
|
return llama_vocab_nl(vocab); |
|
} |
|
|
|
|
|
llama_token llama_token_pad(const struct llama_vocab * vocab) { |
|
return llama_vocab_pad(vocab); |
|
} |
|
|
|
|
|
bool llama_add_bos_token(const struct llama_vocab * vocab) { |
|
return llama_vocab_get_add_bos(vocab); |
|
} |
|
|
|
|
|
bool llama_add_eos_token(const struct llama_vocab * vocab) { |
|
return llama_vocab_get_add_eos(vocab); |
|
} |
|
|
|
|
|
llama_token llama_token_fim_pre(const struct llama_vocab * vocab) { |
|
return llama_vocab_fim_pre(vocab); |
|
} |
|
|
|
|
|
llama_token llama_token_fim_suf(const struct llama_vocab * vocab) { |
|
return llama_vocab_fim_suf(vocab); |
|
} |
|
|
|
|
|
llama_token llama_token_fim_mid(const struct llama_vocab * vocab) { |
|
return llama_vocab_fim_mid(vocab); |
|
} |
|
|
|
|
|
llama_token llama_token_fim_pad(const struct llama_vocab * vocab) { |
|
return llama_vocab_fim_pad(vocab); |
|
} |
|
|
|
|
|
llama_token llama_token_fim_rep(const struct llama_vocab * vocab) { |
|
return llama_vocab_fim_rep(vocab); |
|
} |
|
|
|
|
|
llama_token llama_token_fim_sep(const struct llama_vocab * vocab) { |
|
return llama_vocab_fim_sep(vocab); |
|
} |
|
|
|
|
|
|
|
|
|
|
|
int32_t llama_tokenize( |
|
const struct llama_vocab * vocab, |
|
const char * text, |
|
int32_t text_len, |
|
llama_token * tokens, |
|
int32_t n_tokens_max, |
|
bool add_special, |
|
bool parse_special) { |
|
return vocab->tokenize(text, text_len, tokens, n_tokens_max, add_special, parse_special); |
|
} |
|
|
|
int32_t llama_token_to_piece( |
|
const struct llama_vocab * vocab, |
|
llama_token token, |
|
char * buf, |
|
int32_t length, |
|
int32_t lstrip, |
|
bool special) { |
|
return vocab->token_to_piece(token, buf, length, lstrip, special); |
|
} |
|
|
|
int32_t llama_detokenize( |
|
const struct llama_vocab * vocab, |
|
const llama_token * tokens, |
|
int32_t n_tokens, |
|
char * text, |
|
int32_t text_len_max, |
|
bool remove_special, |
|
bool unparse_special) { |
|
return vocab->detokenize(tokens, n_tokens, text, text_len_max, remove_special, unparse_special); |
|
} |
|
|
|
|