Commit
·
999165e
1
Parent(s):
ebbc7fa
app.py
CHANGED
@@ -74,17 +74,12 @@ def check_system_resources(model_name):
|
|
74 |
|
75 |
if MEMORY >= required_memory_gb:
|
76 |
log.info("✅ Sufficient CPU memory available; using CPU.")
|
77 |
-
<<<<<<< HEAD
|
78 |
return "cpu", MEMORY
|
79 |
else:
|
80 |
log.warning(f"⚠️ Insufficient CPU memory (requires {required_memory_gb:.1f}GB, found {MEMORY}GB).")
|
81 |
log.error("❌ No CPU detected.")
|
82 |
log.error("Will try low memory mode, but it may fail.")
|
83 |
return "cpu", MEMORY
|
84 |
-
=======
|
85 |
-
return "cpu", total_memory_gb
|
86 |
-
|
87 |
-
>>>>>>> 1d6ffe4bce1a741111b16de1ba110e1ee56b92df
|
88 |
|
89 |
@timeit
|
90 |
def setup_environment(model_name):
|
@@ -129,24 +124,14 @@ def download_and_merge_model(base_model_name, lora_model_name, output_dir, devic
|
|
129 |
"""
|
130 |
os.makedirs("temp", exist_ok=True)
|
131 |
log.info("Loading base model...")
|
132 |
-
<<<<<<< HEAD
|
133 |
model = AutoModelForCausalLM.from_pretrained(base_model_name, low_cpu_mem_usage=True, device_map="auto", force_download=True, trust_remote_code=True, torch_dtype=torch.float16)
|
134 |
log.info("Loading adapter tokenizer...")
|
135 |
adapter_tokenizer = AutoTokenizer.from_pretrained(lora_model_name, trust_remote_code=True, device_map="auto", force_download=True, trust_remote_code=True, torch_dtype=torch.float16)
|
136 |
-
=======
|
137 |
-
model = AutoModelForCausalLM.from_pretrained(base_model_name, low_cpu_mem_usage=True, device_map="auto")
|
138 |
-
log.info("Loading adapter tokenizer...")
|
139 |
-
adapter_tokenizer = AutoTokenizer.from_pretrained(lora_model_name, trust_remote_code=True, device_map="auto")
|
140 |
-
>>>>>>> 1d6ffe4bce1a741111b16de1ba110e1ee56b92df
|
141 |
log.info("Resizing token embeddings...")
|
142 |
added_tokens_decoder = adapter_tokenizer.added_tokens_decoder
|
143 |
model.resize_token_embeddings(adapter_tokenizer.vocab_size + len(added_tokens_decoder))
|
144 |
log.info("Loading LoRA adapter...")
|
145 |
-
<<<<<<< HEAD
|
146 |
peft_model = PeftModel.from_pretrained(model, lora_model_name, low_cpu_mem_usage=True, device_map="auto", force_download=True, trust_remote_code=True, torch_dtype=torch.float16)
|
147 |
-
=======
|
148 |
-
peft_model = PeftModel.from_pretrained(model, lora_model_name, low_cpu_mem_usage=True, device_map="auto")
|
149 |
-
>>>>>>> 1d6ffe4bce1a741111b16de1ba110e1ee56b92df
|
150 |
log.info("Merging and unloading model...")
|
151 |
model = peft_model.merge_and_unload()
|
152 |
log.info("Saving model...")
|
|
|
74 |
|
75 |
if MEMORY >= required_memory_gb:
|
76 |
log.info("✅ Sufficient CPU memory available; using CPU.")
|
|
|
77 |
return "cpu", MEMORY
|
78 |
else:
|
79 |
log.warning(f"⚠️ Insufficient CPU memory (requires {required_memory_gb:.1f}GB, found {MEMORY}GB).")
|
80 |
log.error("❌ No CPU detected.")
|
81 |
log.error("Will try low memory mode, but it may fail.")
|
82 |
return "cpu", MEMORY
|
|
|
|
|
|
|
|
|
83 |
|
84 |
@timeit
|
85 |
def setup_environment(model_name):
|
|
|
124 |
"""
|
125 |
os.makedirs("temp", exist_ok=True)
|
126 |
log.info("Loading base model...")
|
|
|
127 |
model = AutoModelForCausalLM.from_pretrained(base_model_name, low_cpu_mem_usage=True, device_map="auto", force_download=True, trust_remote_code=True, torch_dtype=torch.float16)
|
128 |
log.info("Loading adapter tokenizer...")
|
129 |
adapter_tokenizer = AutoTokenizer.from_pretrained(lora_model_name, trust_remote_code=True, device_map="auto", force_download=True, trust_remote_code=True, torch_dtype=torch.float16)
|
|
|
|
|
|
|
|
|
|
|
130 |
log.info("Resizing token embeddings...")
|
131 |
added_tokens_decoder = adapter_tokenizer.added_tokens_decoder
|
132 |
model.resize_token_embeddings(adapter_tokenizer.vocab_size + len(added_tokens_decoder))
|
133 |
log.info("Loading LoRA adapter...")
|
|
|
134 |
peft_model = PeftModel.from_pretrained(model, lora_model_name, low_cpu_mem_usage=True, device_map="auto", force_download=True, trust_remote_code=True, torch_dtype=torch.float16)
|
|
|
|
|
|
|
135 |
log.info("Merging and unloading model...")
|
136 |
model = peft_model.merge_and_unload()
|
137 |
log.info("Saving model...")
|