Update app.py
Browse files
app.py
CHANGED
@@ -17,6 +17,7 @@ import time
|
|
17 |
log_queue = queue.Queue()
|
18 |
current_logs = []
|
19 |
|
|
|
20 |
def log(msg):
|
21 |
"""统一的日志处理函数"""
|
22 |
print(msg)
|
@@ -74,14 +75,11 @@ def check_system_resources(model_name):
|
|
74 |
else:
|
75 |
raise MemoryError(f"❌ 系统内存不足 (需要 {required_memory_gb:.1f}GB, 可用 {available_memory_gb:.1f}GB)")
|
76 |
|
77 |
-
def setup_environment(
|
78 |
-
"""设置环境并返回设备信息""" # try to get from env
|
79 |
-
if not hf_token:
|
80 |
-
raise ValueError("请在设置HF_TOKEN")
|
81 |
-
login(hf_token)
|
82 |
|
83 |
-
# 检查系统资源并决定使用什么设备
|
84 |
-
device, available_memory = check_system_resources(model_name)
|
|
|
85 |
return device
|
86 |
|
87 |
def create_hf_repo(repo_name, hf_token, private=True):
|
@@ -133,6 +131,7 @@ def download_and_merge_model(base_model_name, lora_model_name, output_dir, devic
|
|
133 |
model.save_pretrained(output_dir)
|
134 |
tokenizer.save_pretrained(output_dir)
|
135 |
|
|
|
136 |
return output_dir
|
137 |
|
138 |
except Exception as e:
|
@@ -198,14 +197,15 @@ def quantize_and_push_model(model_path, repo_id, bits=8):
|
|
198 |
def process_model(base_model, lora_model, repo_name, hf_token, progress=gr.Progress()):
|
199 |
"""处理模型的主函数,用于Gradio界面"""
|
200 |
try:
|
|
|
201 |
# 清空之前的日志
|
202 |
current_logs.clear()
|
203 |
|
204 |
# 设置环境和检查资源
|
205 |
-
device = setup_environment(
|
206 |
|
207 |
# 创建HuggingFace仓库
|
208 |
-
repo_url = create_hf_repo(
|
209 |
|
210 |
# 设置输出目录
|
211 |
output_dir = os.path.join(".", "output", repo_name)
|
@@ -214,16 +214,25 @@ def process_model(base_model, lora_model, repo_name, hf_token, progress=gr.Progr
|
|
214 |
# 下载并合并模型
|
215 |
model_path = download_and_merge_model(base_model, lora_model, output_dir, device)
|
216 |
|
217 |
-
|
218 |
-
|
219 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
|
221 |
-
progress(0.7, desc="开始4位量化...")
|
222 |
-
quantize_and_push_model(model_path, repo_name, bits=4)
|
223 |
|
224 |
-
final_message = f"全部完成!模型已上传至: https://huggingface.co/{repo_name}"
|
225 |
-
log(final_message)
|
226 |
-
progress(1.0, desc="处理完成")
|
227 |
|
228 |
return "\n".join(current_logs)
|
229 |
except Exception as e:
|
|
|
17 |
log_queue = queue.Queue()
|
18 |
current_logs = []
|
19 |
|
20 |
+
|
21 |
def log(msg):
|
22 |
"""统一的日志处理函数"""
|
23 |
print(msg)
|
|
|
75 |
else:
|
76 |
raise MemoryError(f"❌ 系统内存不足 (需要 {required_memory_gb:.1f}GB, 可用 {available_memory_gb:.1f}GB)")
|
77 |
|
78 |
+
def setup_environment(api, model_name):
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
# # 检查系统资源并决定使用什么设备
|
81 |
+
# device, available_memory = check_system_resources(model_name)
|
82 |
+
device = "cpu"
|
83 |
return device
|
84 |
|
85 |
def create_hf_repo(repo_name, hf_token, private=True):
|
|
|
131 |
model.save_pretrained(output_dir)
|
132 |
tokenizer.save_pretrained(output_dir)
|
133 |
|
134 |
+
|
135 |
return output_dir
|
136 |
|
137 |
except Exception as e:
|
|
|
197 |
def process_model(base_model, lora_model, repo_name, hf_token, progress=gr.Progress()):
|
198 |
"""处理模型的主函数,用于Gradio界面"""
|
199 |
try:
|
200 |
+
api = HfApi(token=hf_token)
|
201 |
# 清空之前的日志
|
202 |
current_logs.clear()
|
203 |
|
204 |
# 设置环境和检查资源
|
205 |
+
device = setup_environment(api, base_model)
|
206 |
|
207 |
# 创建HuggingFace仓库
|
208 |
+
repo_url = create_hf_repo(api, repo_name)
|
209 |
|
210 |
# 设置输出目录
|
211 |
output_dir = os.path.join(".", "output", repo_name)
|
|
|
214 |
# 下载并合并模型
|
215 |
model_path = download_and_merge_model(base_model, lora_model, output_dir, device)
|
216 |
|
217 |
+
# 推送到HuggingFace
|
218 |
+
log(f"正在将模型推送到HuggingFace...")
|
219 |
+
api = HfApi()
|
220 |
+
api.upload_folder(
|
221 |
+
folder_path=model_path,
|
222 |
+
repo_id=repo_name,
|
223 |
+
repo_type="model"
|
224 |
+
)
|
225 |
+
|
226 |
+
# progress(0.4, desc="开始8位量化...")
|
227 |
+
# # 量化并上传模型
|
228 |
+
# quantize_and_push_model(model_path, repo_name, bits=8)
|
229 |
|
230 |
+
# progress(0.7, desc="开始4位量化...")
|
231 |
+
# quantize_and_push_model(model_path, repo_name, bits=4)
|
232 |
|
233 |
+
# final_message = f"全部完成!模型已上传至: https://huggingface.co/{repo_name}"
|
234 |
+
# log(final_message)
|
235 |
+
# progress(1.0, desc="处理完成")
|
236 |
|
237 |
return "\n".join(current_logs)
|
238 |
except Exception as e:
|