Spaces:
Running
Running
Fix & update
Browse files- .gitignore +8 -0
- app.py +67 -32
- model/__pycache__/bart.cpython-310.pyc +0 -0
- model/__pycache__/modules.cpython-310.pyc +0 -0
- requirements copy.txt +75 -0
- requirements.txt +3 -4
- utils/__pycache__/audio_utils.cpython-310.pyc +0 -0
.gitignore
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/.venv
|
2 |
+
|
3 |
+
/*/__pycache__
|
4 |
+
|
5 |
+
*.mp3
|
6 |
+
*.wav
|
7 |
+
|
8 |
+
*.pth
|
app.py
CHANGED
@@ -1,67 +1,101 @@
|
|
1 |
-
import os
|
2 |
-
import argparse
|
3 |
import gradio as gr
|
4 |
-
from timeit import default_timer as timer
|
5 |
-
import torch
|
6 |
import numpy as np
|
7 |
-
import
|
8 |
-
|
|
|
|
|
|
|
9 |
from model.bart import BartCaptionModel
|
10 |
from utils.audio_utils import load_audio, STR_CH_FIRST
|
11 |
|
12 |
if os.path.isfile("transfer.pth") == False:
|
13 |
-
torch.hub.download_url_to_file(
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
19 |
|
20 |
-
example_list = [
|
21 |
-
model = BartCaptionModel(max_length
|
22 |
-
pretrained_object = torch.load(
|
23 |
-
state_dict = pretrained_object[
|
24 |
model.load_state_dict(state_dict)
|
|
|
25 |
if torch.cuda.is_available():
|
26 |
torch.cuda.set_device(device)
|
27 |
model = model.cuda(device)
|
|
|
28 |
model.eval()
|
29 |
|
|
|
30 |
def get_audio(audio_path, duration=10, target_sr=16000):
|
31 |
n_samples = int(duration * target_sr)
|
|
|
32 |
audio, sr = load_audio(
|
33 |
-
path=
|
34 |
-
ch_format=
|
35 |
-
sample_rate=
|
36 |
-
downmix_to_mono=
|
37 |
)
|
|
|
38 |
if len(audio.shape) == 2:
|
39 |
audio = audio.mean(0, False) # to mono
|
|
|
40 |
input_size = int(n_samples)
|
|
|
41 |
if audio.shape[-1] < input_size: # pad sequence
|
42 |
pad = np.zeros(input_size)
|
43 |
pad[: audio.shape[-1]] = audio
|
44 |
audio = pad
|
|
|
45 |
ceil = int(audio.shape[-1] // n_samples)
|
46 |
-
|
|
|
|
|
|
|
|
|
47 |
return audio
|
48 |
|
|
|
49 |
def captioning(audio_path):
|
50 |
-
audio_tensor = get_audio(audio_path
|
|
|
51 |
if torch.cuda.is_available():
|
52 |
audio_tensor = audio_tensor.to(device)
|
|
|
53 |
with torch.no_grad():
|
54 |
output = model.generate(
|
55 |
samples=audio_tensor,
|
56 |
num_beams=5,
|
57 |
)
|
|
|
58 |
inference = ""
|
|
|
59 |
number_of_chunks = range(audio_tensor.shape[0])
|
|
|
60 |
for chunk, text in zip(number_of_chunks, output):
|
61 |
time = f"[{chunk * 10}:00-{(chunk + 1) * 10}:00]"
|
62 |
inference += f"{time}\n{text} \n \n"
|
|
|
63 |
return inference
|
64 |
|
|
|
65 |
title = "Interactive demo: Music Captioning 🤖🎵"
|
66 |
description = """
|
67 |
<p style='text-align: center'> LP-MusicCaps: LLM-Based Pseudo Music Captioning</p>
|
@@ -73,16 +107,17 @@ description = """
|
|
73 |
|
74 |
article = "<p style='text-align: center'><a href='https://seungheondoh.github.io/' target='_blank'>Author Info</a> | <a href='https://github.com/seungheondoh' target='_blank'>Github</a></p>"
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
-
demo
|
78 |
-
inputs=gr.Audio(type="filepath"),
|
79 |
-
outputs=[
|
80 |
-
gr.Textbox(label="Caption generated by LP-MusicCaps Transfer Model"),
|
81 |
-
],
|
82 |
-
examples=example_list,
|
83 |
-
title=title,
|
84 |
-
description=description,
|
85 |
-
article=article,
|
86 |
-
cache_examples=False
|
87 |
-
)
|
88 |
-
demo.launch()
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
2 |
import numpy as np
|
3 |
+
import os
|
4 |
+
import torch
|
5 |
+
|
6 |
+
from timeit import default_timer as timer
|
7 |
+
|
8 |
from model.bart import BartCaptionModel
|
9 |
from utils.audio_utils import load_audio, STR_CH_FIRST
|
10 |
|
11 |
if os.path.isfile("transfer.pth") == False:
|
12 |
+
torch.hub.download_url_to_file(
|
13 |
+
"https://huggingface.co/seungheondoh/lp-music-caps/resolve/main/transfer.pth",
|
14 |
+
"transfer.pth",
|
15 |
+
)
|
16 |
+
|
17 |
+
torch.hub.download_url_to_file(
|
18 |
+
"https://huggingface.co/seungheondoh/lp-music-caps/resolve/main/folk.wav",
|
19 |
+
"folk.wav",
|
20 |
+
)
|
21 |
+
|
22 |
+
torch.hub.download_url_to_file(
|
23 |
+
"https://huggingface.co/seungheondoh/lp-music-caps/resolve/main/electronic.mp3",
|
24 |
+
"electronic.mp3",
|
25 |
+
)
|
26 |
+
|
27 |
+
torch.hub.download_url_to_file(
|
28 |
+
"https://huggingface.co/seungheondoh/lp-music-caps/resolve/main/orchestra.wav",
|
29 |
+
"orchestra.wav",
|
30 |
+
)
|
31 |
|
32 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
33 |
|
34 |
+
example_list = ["folk.wav", "electronic.mp3", "orchestra.wav"]
|
35 |
+
model = BartCaptionModel(max_length=128)
|
36 |
+
pretrained_object = torch.load("./transfer.pth", map_location="cpu")
|
37 |
+
state_dict = pretrained_object["state_dict"]
|
38 |
model.load_state_dict(state_dict)
|
39 |
+
|
40 |
if torch.cuda.is_available():
|
41 |
torch.cuda.set_device(device)
|
42 |
model = model.cuda(device)
|
43 |
+
|
44 |
model.eval()
|
45 |
|
46 |
+
|
47 |
def get_audio(audio_path, duration=10, target_sr=16000):
|
48 |
n_samples = int(duration * target_sr)
|
49 |
+
|
50 |
audio, sr = load_audio(
|
51 |
+
path=audio_path,
|
52 |
+
ch_format=STR_CH_FIRST,
|
53 |
+
sample_rate=target_sr,
|
54 |
+
downmix_to_mono=True,
|
55 |
)
|
56 |
+
|
57 |
if len(audio.shape) == 2:
|
58 |
audio = audio.mean(0, False) # to mono
|
59 |
+
|
60 |
input_size = int(n_samples)
|
61 |
+
|
62 |
if audio.shape[-1] < input_size: # pad sequence
|
63 |
pad = np.zeros(input_size)
|
64 |
pad[: audio.shape[-1]] = audio
|
65 |
audio = pad
|
66 |
+
|
67 |
ceil = int(audio.shape[-1] // n_samples)
|
68 |
+
|
69 |
+
audio = torch.from_numpy(
|
70 |
+
np.stack(np.split(audio[: ceil * n_samples], ceil)).astype("float32")
|
71 |
+
)
|
72 |
+
|
73 |
return audio
|
74 |
|
75 |
+
|
76 |
def captioning(audio_path):
|
77 |
+
audio_tensor = get_audio(audio_path=audio_path)
|
78 |
+
|
79 |
if torch.cuda.is_available():
|
80 |
audio_tensor = audio_tensor.to(device)
|
81 |
+
|
82 |
with torch.no_grad():
|
83 |
output = model.generate(
|
84 |
samples=audio_tensor,
|
85 |
num_beams=5,
|
86 |
)
|
87 |
+
|
88 |
inference = ""
|
89 |
+
|
90 |
number_of_chunks = range(audio_tensor.shape[0])
|
91 |
+
|
92 |
for chunk, text in zip(number_of_chunks, output):
|
93 |
time = f"[{chunk * 10}:00-{(chunk + 1) * 10}:00]"
|
94 |
inference += f"{time}\n{text} \n \n"
|
95 |
+
|
96 |
return inference
|
97 |
|
98 |
+
|
99 |
title = "Interactive demo: Music Captioning 🤖🎵"
|
100 |
description = """
|
101 |
<p style='text-align: center'> LP-MusicCaps: LLM-Based Pseudo Music Captioning</p>
|
|
|
107 |
|
108 |
article = "<p style='text-align: center'><a href='https://seungheondoh.github.io/' target='_blank'>Author Info</a> | <a href='https://github.com/seungheondoh' target='_blank'>Github</a></p>"
|
109 |
|
110 |
+
demo = gr.Interface(
|
111 |
+
fn=captioning,
|
112 |
+
inputs=gr.Audio(type="filepath"),
|
113 |
+
outputs=[
|
114 |
+
gr.Textbox(label="Caption generated by LP-MusicCaps Transfer Model"),
|
115 |
+
],
|
116 |
+
examples=example_list,
|
117 |
+
title=title,
|
118 |
+
description=description,
|
119 |
+
article=article,
|
120 |
+
cache_examples=False,
|
121 |
+
)
|
122 |
|
123 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model/__pycache__/bart.cpython-310.pyc
CHANGED
Binary files a/model/__pycache__/bart.cpython-310.pyc and b/model/__pycache__/bart.cpython-310.pyc differ
|
|
model/__pycache__/modules.cpython-310.pyc
CHANGED
Binary files a/model/__pycache__/modules.cpython-310.pyc and b/model/__pycache__/modules.cpython-310.pyc differ
|
|
requirements copy.txt
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
aiofiles==23.2.1
|
2 |
+
annotated-types==0.7.0
|
3 |
+
anyio==4.7.0
|
4 |
+
audioread==3.0.1
|
5 |
+
certifi==2024.8.30
|
6 |
+
cffi==1.17.1
|
7 |
+
charset-normalizer==3.4.0
|
8 |
+
click==8.1.7
|
9 |
+
decorator==5.1.1
|
10 |
+
exceptiongroup==1.2.2
|
11 |
+
fastapi==0.115.6
|
12 |
+
ffmpy==0.4.0
|
13 |
+
filelock==3.16.1
|
14 |
+
fsspec==2024.10.0
|
15 |
+
gradio==5.8.0
|
16 |
+
gradio_client==1.5.1
|
17 |
+
h11==0.14.0
|
18 |
+
httpcore==1.0.7
|
19 |
+
httpx==0.28.1
|
20 |
+
huggingface-hub==0.26.5
|
21 |
+
idna==3.10
|
22 |
+
Jinja2==3.1.4
|
23 |
+
joblib==1.4.2
|
24 |
+
lazy_loader==0.4
|
25 |
+
librosa==0.10.2.post1
|
26 |
+
llvmlite==0.43.0
|
27 |
+
markdown-it-py==3.0.0
|
28 |
+
MarkupSafe==2.1.5
|
29 |
+
mdurl==0.1.2
|
30 |
+
msgpack==1.1.0
|
31 |
+
numba==0.60.0
|
32 |
+
numpy==1.26.4
|
33 |
+
orjson==3.10.12
|
34 |
+
packaging==24.2
|
35 |
+
pandas==2.2.3
|
36 |
+
pillow==11.0.0
|
37 |
+
platformdirs==4.3.6
|
38 |
+
pooch==1.8.2
|
39 |
+
pycparser==2.22
|
40 |
+
pydantic==2.10.3
|
41 |
+
pydantic_core==2.27.1
|
42 |
+
pydub==0.25.1
|
43 |
+
Pygments==2.18.0
|
44 |
+
python-dateutil==2.9.0.post0
|
45 |
+
python-multipart==0.0.19
|
46 |
+
pytz==2024.2
|
47 |
+
PyYAML==6.0.2
|
48 |
+
regex==2024.11.6
|
49 |
+
requests==2.32.3
|
50 |
+
rich==13.9.4
|
51 |
+
ruff==0.8.3
|
52 |
+
safehttpx==0.1.6
|
53 |
+
safetensors==0.4.5
|
54 |
+
scikit-learn==1.6.0
|
55 |
+
scipy==1.14.1
|
56 |
+
semantic-version==2.10.0
|
57 |
+
shellingham==1.5.4
|
58 |
+
six==1.17.0
|
59 |
+
sniffio==1.3.1
|
60 |
+
soundfile==0.12.1
|
61 |
+
soxr==0.5.0.post1
|
62 |
+
starlette==0.41.3
|
63 |
+
threadpoolctl==3.5.0
|
64 |
+
tokenizers==0.19.1
|
65 |
+
tomlkit==0.13.2
|
66 |
+
torch==1.13.1
|
67 |
+
torchaudio==0.13.1
|
68 |
+
tqdm==4.67.1
|
69 |
+
transformers==4.42.0
|
70 |
+
typer==0.15.1
|
71 |
+
typing_extensions==4.12.2
|
72 |
+
tzdata==2024.2
|
73 |
+
urllib3==2.2.3
|
74 |
+
uvicorn==0.32.1
|
75 |
+
websockets==14.1
|
requirements.txt
CHANGED
@@ -1,8 +1,7 @@
|
|
1 |
--extra-index-url https://download.pytorch.org/whl/cpu
|
2 |
torch==1.13.1
|
3 |
torchaudio==0.13.1
|
4 |
-
transformers==4.
|
5 |
-
librosa
|
6 |
-
|
7 |
-
gradio_client==0.2.7
|
8 |
numpy<2
|
|
|
1 |
--extra-index-url https://download.pytorch.org/whl/cpu
|
2 |
torch==1.13.1
|
3 |
torchaudio==0.13.1
|
4 |
+
transformers==4.42.0
|
5 |
+
librosa>=0.8
|
6 |
+
gradio==5.8.0
|
|
|
7 |
numpy<2
|
utils/__pycache__/audio_utils.cpython-310.pyc
CHANGED
Binary files a/utils/__pycache__/audio_utils.cpython-310.pyc and b/utils/__pycache__/audio_utils.cpython-310.pyc differ
|
|