import gradio as gr import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer # Load model and tokenizer model_name = "distilbert-base-uncased-finetuned-sst-2-english" model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) # Function to classify text (sentiment analysis) def analyze_sentiment(text): inputs = tokenizer(text, return_tensors='pt') outputs = model(**inputs) prediction = torch.argmax(outputs.logits) # Map prediction to sentiment (0 == Negative, 1 == Positive) sentiment = "Positive" if prediction.item() == 1 else "Negative" return sentiment # Create Gradio interface demo = gr.Interface( fn=analyze_sentiment, inputs="text", outputs="text", title="Sentiment Analysis with DistilBERT", description="Enter text to analyze its sentiment (Positive/Negative)", ) # Launch the interface if __name__ == "__main__": demo.launch()