File size: 13,260 Bytes
cdab240 317855d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
import os
from datetime import datetime
import ee
import json
import geemap
import numpy as np
import geemap.foliumap as gee_folium
import leafmap.foliumap as leaf_folium
import streamlit as st
import pandas as pd
import geopandas as gpd
from shapely.ops import transform
from functools import reduce
import plotly.express as px
import branca.colormap as cm
import folium
import pyproj
from io import StringIO, BytesIO
import requests
import kml2geojson
def force_stop():
show_credits()
st.stop()
def one_time_setup():
credentials_path = os.path.expanduser("~/.config/earthengine/credentials")
if os.path.exists(credentials_path):
pass # Earth Engine credentials already exist
elif "EE" in os.environ: # write the credentials to the file
ee_credentials = os.environ.get("EE")
os.makedirs(os.path.dirname(credentials_path), exist_ok=True)
with open(credentials_path, "w") as f:
f.write(ee_credentials)
else:
raise ValueError(
f"Earth Engine credentials not found at {credentials_path} or in the environment variable 'EE'"
)
ee.Initialize()
def show_credits():
# Add credits
st.write(
"""
<div style="display: flex; justify-content: center; align-items: center; margin-top: 20px;">
<p style="text-align: center;">Developed by <a href="https://sustainability-lab.github.io/">Sustainability Lab</a>, <a href="https://www.iitgn.ac.in/">IIT Gandhinagar</a></p>
</div>
<div style="display: flex; justify-content: center; align-items: center;">
<p style="text-align: center;"> Supported by <a href="https://forests.gujarat.gov.in/">Gujarat Forest Department</a>
</p>
</div>
""",
unsafe_allow_html=True,
)
def get_gdf_from_file_url(file_url):
if isinstance(file_url, str):
if file_url.startswith("https://drive.google.com/file/d/"):
ID = file_url.replace("https://drive.google.com/file/d/", "").split("/")[0]
file_url = f"https://drive.google.com/uc?id={ID}"
elif file_url.startswith("https://drive.google.com/open?id="):
ID = file_url.replace("https://drive.google.com/open?id=", "")
file_url = f"https://drive.google.com/uc?id={ID}"
response = requests.get(file_url)
bytes_data = BytesIO(response.content)
string_data = response.text
else:
bytes_data = BytesIO(file_url.getvalue())
string_data = file_url.getvalue().decode("utf-8")
if string_data.startswith("<?xml"):
geojson = kml2geojson.convert(bytes_data)
features = geojson[0]["features"]
epsg = 4326
input_gdf = gpd.GeoDataFrame.from_features(features, crs=f"EPSG:{epsg}")
else:
input_gdf = gpd.read_file(bytes_data)
return input_gdf
# Function of find best suited statewise EPSG code
def find_best_epsg(geometry):
if geometry.geom_type == "Polygon":
centroid = geometry.centroid
else:
st.error("Geometry is not Polygon !!!")
st.stop()
common_epsg_codes = [
7756, # Andhra Pradesh
7757, # Arunachal Pradesh
7758, # Assam
7759, # Bihar
7760, # Delhi
7761, # Gujarat
7762, # Haryana
7763, # HimachalPradesh
7764, # JammuAndKashmir
7765, # Jharkhand
7766, # MadhyaPradesh
7767, # Maharastra
7768, # Manipur
7769, # Meghalaya
7770, # Nagaland
7772, # Orissa
7773, # Punjab
7774, # Rajasthan
7775, # UttarPradesh
7776, # Uttaranchal
7777, # A&N
7778, # Chattisgarh
7779, # Goa
7780, # Karnataka
7781, # Kerala
7782, # Lakshadweep
7783, # Mizoram
7784, # Sikkim
7785, # TamilNadu
7786, # Tripura
7787, # WestBengal
7771, # NE India
7755, # India
]
for epsg in common_epsg_codes:
crs = pyproj.CRS.from_epsg(epsg)
area_of_use = crs.area_of_use.bounds # Get the bounding box of the area of use
# check if centroid of polygon lies in teh bounds of the crs
if (area_of_use[0] <= centroid.x <= area_of_use[2]) and (area_of_use[1] <= centroid.y <= area_of_use[3]):
return epsg # Return the best suitable EPSG code
def daterange_str_to_dates(daterange_str):
start_date, end_date = daterange_str.split("-")
start_date = pd.to_datetime(start_date)
end_date = pd.to_datetime(end_date)
return start_date, end_date
def daterange_dates_to_str(start_date, end_date):
return f"{start_date.strftime('%Y/%m/%d')}-{end_date.strftime('%Y/%m/%d')}"
def daterange_str_to_year(daterange_str):
start_date, _ = daterange_str.split("-")
year = pd.to_datetime(start_date).year
return year
def shape_3d_to_2d(shape):
if shape.has_z:
return transform(lambda x, y, z: (x, y), shape)
else:
return shape
def preprocess_gdf(gdf):
gdf["geometry"] = gdf["geometry"].apply(shape_3d_to_2d)
gdf["geometry"] = gdf.buffer(0) # Fixes some invalid geometries
return gdf
def to_best_crs(gdf):
best_epsg_code = find_best_epsg(gdf["geometry"].iloc[0])
gdf = gdf.to_crs(epsg=best_epsg_code)
return gdf
def is_valid_polygon(geometry_gdf):
geometry = geometry_gdf.geometry.item()
return (geometry.type == "Polygon") and (not geometry.is_empty)
def add_geometry_to_maps(map_list, geometry_gdf, buffer_geometry_gdf, opacity=0.0):
for m in map_list:
m.add_gdf(
buffer_geometry_gdf,
layer_name="Geometry Buffer",
style_function=lambda x: {"color": "red", "fillOpacity": opacity, "fillColor": "red"},
)
m.add_gdf(
geometry_gdf,
layer_name="Geometry",
style_function=lambda x: {"color": "blue", "fillOpacity": opacity, "fillColor": "blue"},
)
def get_dem_slope_maps(ee_geometry, wayback_url, wayback_title):
# Create the map for DEM
dem_map = gee_folium.Map(controls={"scale": "bottomleft"})
dem_map.add_tile_layer(wayback_url, name=wayback_title, attribution="Esri")
dem_layer = ee.Image("USGS/SRTMGL1_003")
# Set the target resolution to 10 meters
target_resolution = 10
dem_layer = dem_layer.resample("bilinear").reproject(crs="EPSG:4326", scale=target_resolution).clip(ee_geometry)
# Generate contour lines using elevation thresholds
terrain = ee.Algorithms.Terrain(dem_layer)
contour_interval = 1
contours = (
terrain.select("elevation").subtract(terrain.select("elevation").mod(contour_interval)).rename("contours")
)
# Calculate the minimum and maximum values
stats = contours.reduceRegion(reducer=ee.Reducer.minMax(), scale=10, maxPixels=1e13)
max_value = stats.get("contours_max").getInfo()
min_value = stats.get("contours_min").getInfo()
vis_params = {"min": min_value, "max": max_value, "palette": ["blue", "green", "yellow", "red"]}
dem_map.addLayer(contours, vis_params, "Contours")
# Create a colormap
cmap = cm.LinearColormap(colors=vis_params["palette"], vmin=vis_params["min"], vmax=vis_params["max"])
tick_size = int((max_value - min_value) / 4)
dem_map.add_legend(
title="Elevation (m)",
legend_dict={
"{}-{} m".format(min_value, min_value + tick_size): "#0000FF",
"{}-{} m".format(min_value + tick_size, min_value + 2 * tick_size): "#00FF00",
"{}-{} m".format(min_value + 2 * tick_size, min_value + 3 * tick_size): "#FFFF00",
"{}-{} m".format(min_value + 3 * tick_size, max_value): "#FF0000",
},
position="bottomright",
draggable=False,
)
# Create the map for Slope
slope_map = gee_folium.Map(controls={"scale": "bottomleft"})
slope_map.add_tile_layer(wayback_url, name=wayback_title, attribution="Esri")
# Calculate slope from the DEM
slope_layer = (
ee.Terrain.slope(
ee.Image("USGS/SRTMGL1_003").resample("bilinear").reproject(crs="EPSG:4326", scale=target_resolution)
)
.clip(ee_geometry)
.rename("slope")
)
# Calculate the minimum and maximum values
stats = slope_layer.reduceRegion(reducer=ee.Reducer.minMax(), scale=10, maxPixels=1e13)
max_value = int(stats.get("slope_max").getInfo())
min_value = int(stats.get("slope_min").getInfo())
vis_params = {"min": min_value, "max": max_value, "palette": ["blue", "green", "yellow", "red"]}
slope_map.addLayer(slope_layer, vis_params, "Slope Layer")
# Create a colormap
colormap = cm.LinearColormap(colors=vis_params["palette"], vmin=vis_params["min"], vmax=vis_params["max"])
tick_size = int((max_value - min_value) / 4)
slope_map.add_legend(
title="Slope (degrees)",
legend_dict={
"{}-{} deg".format(min_value, min_value + tick_size): "#0000FF",
"{}-{} deg".format(min_value + tick_size, min_value + 2 * tick_size): "#00FF00",
"{}-{} deg".format(min_value + 2 * tick_size, min_value + 3 * tick_size): "#FFFF00",
"{}-{} deg".format(min_value + 3 * tick_size, max_value): "#FF0000",
},
position="bottomright",
draggable=False,
)
return dem_map, slope_map
def add_indices(image, nir_band, red_band, blue_band, evi_vars):
# Add negative cloud
neg_cloud = image.select("MSK_CLDPRB").multiply(-1).rename("Neg_MSK_CLDPRB")
nir = image.select(nir_band).divide(10000)
red = image.select(red_band).divide(10000)
blue = image.select(blue_band).divide(10000)
numerator = nir.subtract(red)
ndvi = (numerator).divide(nir.add(red)).rename("NDVI").clamp(-1, 1)
# EVI formula taken from: https://en.wikipedia.org/wiki/Enhanced_vegetation_index
denominator = nir.add(red.multiply(evi_vars["C1"])).subtract(blue.multiply(evi_vars["C2"])).add(evi_vars["L"])
evi = numerator.divide(denominator).multiply(evi_vars["G"]).rename("EVI").clamp(-1, 1)
evi2 = (
numerator.divide(nir.add(evi_vars["L"]).add(red.multiply(evi_vars["C"])))
.multiply(evi_vars["G"])
.rename("EVI2")
.clamp(-1, 1)
)
return image.addBands([neg_cloud, ndvi, evi, evi2])
def get_histogram(image, geometry, bins):
# Get image values as a list
values = image.reduceRegion(reducer=ee.Reducer.toList(), geometry=geometry, scale=10, maxPixels=1e13).get("NDVI")
# Convert values to a NumPy array
values_array = np.array(values.getInfo())
# Compute the histogram on bins
hist, bin_edges = np.histogram(values_array, bins=bins)
return hist, bin_edges
def process_date(
daterange,
satellite,
veg_indices,
satellites,
buffer_ee_geometry,
ee_feature_collection,
buffer_ee_feature_collection,
result_df,
):
start_date, end_date = daterange
daterange_str = daterange_dates_to_str(start_date, end_date)
prefix = f"Processing {satellite} - {daterange_str}"
try:
attrs = satellites[satellite]
collection = attrs["collection"]
collection = collection.filterBounds(buffer_ee_geometry)
collection = collection.filterDate(start_date, end_date)
bucket = {}
for veg_index in veg_indices:
mosaic_veg_index = collection.qualityMosaic(veg_index)
fc = geemap.zonal_stats(
mosaic_veg_index, ee_feature_collection, scale=attrs["scale"], return_fc=True
).getInfo()
mean_veg_index = fc["features"][0]["properties"][veg_index]
bucket[veg_index] = mean_veg_index
fc = geemap.zonal_stats(
mosaic_veg_index, buffer_ee_feature_collection, scale=attrs["scale"], return_fc=True
).getInfo()
buffer_mean_veg_index = fc["features"][0]["properties"][veg_index]
bucket[f"{veg_index}_buffer"] = buffer_mean_veg_index
bucket[f"{veg_index}_ratio"] = mean_veg_index / buffer_mean_veg_index
bucket[f"mosaic_{veg_index}"] = mosaic_veg_index
# Get median mosaic
bucket["mosaic_visual_max_ndvi"] = collection.qualityMosaic("NDVI")
bucket["mosaic_visual_median"] = collection.median()
bucket["image_visual_least_cloud"] = collection.sort("CLOUDY_PIXEL_PERCENTAGE").first()
if satellite == "COPERNICUS/S2_SR_HARMONIZED":
cloud_mask_probability = fc["features"][0]["properties"]["MSK_CLDPRB"] / 100
else:
cloud_mask_probability = None
bucket["Cloud (0 to 1)"] = cloud_mask_probability
result_df.loc[daterange_str, list(bucket.keys())] = list(bucket.values())
count = collection.size().getInfo()
suffix = f" - Processed {count} images"
write_info(f"{prefix}{suffix}")
except Exception as e:
print(e)
suffix = f" - Imagery not available"
write_info(f"{prefix}{suffix}")
def write_info(info, center_align=False):
if center_align:
st.write(f"<div style='text-align: center; color:#006400;'>{info}</div>", unsafe_allow_html=True)
else:
st.write(f"<span style='color:#006400;'>{info}</span>", unsafe_allow_html=True)
|