File size: 13,260 Bytes
cdab240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
317855d
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import os
from datetime import datetime
import ee
import json
import geemap
import numpy as np
import geemap.foliumap as gee_folium
import leafmap.foliumap as leaf_folium
import streamlit as st
import pandas as pd
import geopandas as gpd
from shapely.ops import transform
from functools import reduce
import plotly.express as px
import branca.colormap as cm
import folium
import pyproj
from io import StringIO, BytesIO
import requests
import kml2geojson


def force_stop():
    show_credits()
    st.stop()


def one_time_setup():
    credentials_path = os.path.expanduser("~/.config/earthengine/credentials")
    if os.path.exists(credentials_path):
        pass  # Earth Engine credentials already exist
    elif "EE" in os.environ:  # write the credentials to the file
        ee_credentials = os.environ.get("EE")
        os.makedirs(os.path.dirname(credentials_path), exist_ok=True)
        with open(credentials_path, "w") as f:
            f.write(ee_credentials)
    else:
        raise ValueError(
            f"Earth Engine credentials not found at {credentials_path} or in the environment variable 'EE'"
        )

    ee.Initialize()


def show_credits():
    # Add credits
    st.write(
        """
        <div style="display: flex; justify-content: center; align-items: center; margin-top: 20px;">
    <p style="text-align: center;">Developed by <a href="https://sustainability-lab.github.io/">Sustainability Lab</a>, <a href="https://www.iitgn.ac.in/">IIT Gandhinagar</a></p>
    </div>
    <div style="display: flex; justify-content: center; align-items: center;">
    <p style="text-align: center;"> Supported by <a href="https://forests.gujarat.gov.in/">Gujarat Forest Department</a>
    </p>
    </div>
    """,
        unsafe_allow_html=True,
    )


def get_gdf_from_file_url(file_url):
    if isinstance(file_url, str):
        if file_url.startswith("https://drive.google.com/file/d/"):
            ID = file_url.replace("https://drive.google.com/file/d/", "").split("/")[0]
            file_url = f"https://drive.google.com/uc?id={ID}"
        elif file_url.startswith("https://drive.google.com/open?id="):
            ID = file_url.replace("https://drive.google.com/open?id=", "")
            file_url = f"https://drive.google.com/uc?id={ID}"

        response = requests.get(file_url)
        bytes_data = BytesIO(response.content)
        string_data = response.text
    else:
        bytes_data = BytesIO(file_url.getvalue())
        string_data = file_url.getvalue().decode("utf-8")

    if string_data.startswith("<?xml"):
        geojson = kml2geojson.convert(bytes_data)
        features = geojson[0]["features"]
        epsg = 4326
        input_gdf = gpd.GeoDataFrame.from_features(features, crs=f"EPSG:{epsg}")
    else:
        input_gdf = gpd.read_file(bytes_data)

    return input_gdf


# Function of find best suited statewise EPSG code
def find_best_epsg(geometry):
    if geometry.geom_type == "Polygon":
        centroid = geometry.centroid
    else:
        st.error("Geometry is not Polygon !!!")
        st.stop()
    common_epsg_codes = [
        7756,  # Andhra Pradesh
        7757,  # Arunachal Pradesh
        7758,  # Assam
        7759,  # Bihar
        7760,  # Delhi
        7761,  # Gujarat
        7762,  # Haryana
        7763,  # HimachalPradesh
        7764,  # JammuAndKashmir
        7765,  # Jharkhand
        7766,  # MadhyaPradesh
        7767,  # Maharastra
        7768,  # Manipur
        7769,  # Meghalaya
        7770,  # Nagaland
        7772,  # Orissa
        7773,  # Punjab
        7774,  # Rajasthan
        7775,  # UttarPradesh
        7776,  # Uttaranchal
        7777,  # A&N
        7778,  # Chattisgarh
        7779,  # Goa
        7780,  # Karnataka
        7781,  # Kerala
        7782,  # Lakshadweep
        7783,  # Mizoram
        7784,  # Sikkim
        7785,  # TamilNadu
        7786,  # Tripura
        7787,  # WestBengal
        7771,  # NE India
        7755,  # India
    ]

    for epsg in common_epsg_codes:
        crs = pyproj.CRS.from_epsg(epsg)
        area_of_use = crs.area_of_use.bounds  # Get the bounding box of the area of use

        # check if centroid of polygon lies in teh bounds of the crs
        if (area_of_use[0] <= centroid.x <= area_of_use[2]) and (area_of_use[1] <= centroid.y <= area_of_use[3]):
            return epsg  # Return the best suitable EPSG code


def daterange_str_to_dates(daterange_str):
    start_date, end_date = daterange_str.split("-")
    start_date = pd.to_datetime(start_date)
    end_date = pd.to_datetime(end_date)
    return start_date, end_date


def daterange_dates_to_str(start_date, end_date):
    return f"{start_date.strftime('%Y/%m/%d')}-{end_date.strftime('%Y/%m/%d')}"


def daterange_str_to_year(daterange_str):
    start_date, _ = daterange_str.split("-")
    year = pd.to_datetime(start_date).year
    return year


def shape_3d_to_2d(shape):
    if shape.has_z:
        return transform(lambda x, y, z: (x, y), shape)
    else:
        return shape


def preprocess_gdf(gdf):
    gdf["geometry"] = gdf["geometry"].apply(shape_3d_to_2d)
    gdf["geometry"] = gdf.buffer(0)  # Fixes some invalid geometries
    return gdf


def to_best_crs(gdf):
    best_epsg_code = find_best_epsg(gdf["geometry"].iloc[0])
    gdf = gdf.to_crs(epsg=best_epsg_code)
    return gdf


def is_valid_polygon(geometry_gdf):
    geometry = geometry_gdf.geometry.item()
    return (geometry.type == "Polygon") and (not geometry.is_empty)


def add_geometry_to_maps(map_list, geometry_gdf, buffer_geometry_gdf, opacity=0.0):
    for m in map_list:
        m.add_gdf(
            buffer_geometry_gdf,
            layer_name="Geometry Buffer",
            style_function=lambda x: {"color": "red", "fillOpacity": opacity, "fillColor": "red"},
        )
        m.add_gdf(
            geometry_gdf,
            layer_name="Geometry",
            style_function=lambda x: {"color": "blue", "fillOpacity": opacity, "fillColor": "blue"},
        )


def get_dem_slope_maps(ee_geometry, wayback_url, wayback_title):
    # Create the map for DEM
    dem_map = gee_folium.Map(controls={"scale": "bottomleft"})
    dem_map.add_tile_layer(wayback_url, name=wayback_title, attribution="Esri")

    dem_layer = ee.Image("USGS/SRTMGL1_003")
    # Set the target resolution to 10 meters
    target_resolution = 10
    dem_layer = dem_layer.resample("bilinear").reproject(crs="EPSG:4326", scale=target_resolution).clip(ee_geometry)

    # Generate contour lines using elevation thresholds
    terrain = ee.Algorithms.Terrain(dem_layer)
    contour_interval = 1
    contours = (
        terrain.select("elevation").subtract(terrain.select("elevation").mod(contour_interval)).rename("contours")
    )

    # Calculate the minimum and maximum values
    stats = contours.reduceRegion(reducer=ee.Reducer.minMax(), scale=10, maxPixels=1e13)
    max_value = stats.get("contours_max").getInfo()
    min_value = stats.get("contours_min").getInfo()
    vis_params = {"min": min_value, "max": max_value, "palette": ["blue", "green", "yellow", "red"]}
    dem_map.addLayer(contours, vis_params, "Contours")
    # Create a colormap
    cmap = cm.LinearColormap(colors=vis_params["palette"], vmin=vis_params["min"], vmax=vis_params["max"])
    tick_size = int((max_value - min_value) / 4)
    dem_map.add_legend(
        title="Elevation (m)",
        legend_dict={
            "{}-{} m".format(min_value, min_value + tick_size): "#0000FF",
            "{}-{} m".format(min_value + tick_size, min_value + 2 * tick_size): "#00FF00",
            "{}-{} m".format(min_value + 2 * tick_size, min_value + 3 * tick_size): "#FFFF00",
            "{}-{} m".format(min_value + 3 * tick_size, max_value): "#FF0000",
        },
        position="bottomright",
        draggable=False,
    )

    # Create the map for Slope
    slope_map = gee_folium.Map(controls={"scale": "bottomleft"})
    slope_map.add_tile_layer(wayback_url, name=wayback_title, attribution="Esri")

    # Calculate slope from the DEM
    slope_layer = (
        ee.Terrain.slope(
            ee.Image("USGS/SRTMGL1_003").resample("bilinear").reproject(crs="EPSG:4326", scale=target_resolution)
        )
        .clip(ee_geometry)
        .rename("slope")
    )
    # Calculate the minimum and maximum values
    stats = slope_layer.reduceRegion(reducer=ee.Reducer.minMax(), scale=10, maxPixels=1e13)
    max_value = int(stats.get("slope_max").getInfo())
    min_value = int(stats.get("slope_min").getInfo())
    vis_params = {"min": min_value, "max": max_value, "palette": ["blue", "green", "yellow", "red"]}
    slope_map.addLayer(slope_layer, vis_params, "Slope Layer")
    # Create a colormap
    colormap = cm.LinearColormap(colors=vis_params["palette"], vmin=vis_params["min"], vmax=vis_params["max"])
    tick_size = int((max_value - min_value) / 4)
    slope_map.add_legend(
        title="Slope (degrees)",
        legend_dict={
            "{}-{} deg".format(min_value, min_value + tick_size): "#0000FF",
            "{}-{} deg".format(min_value + tick_size, min_value + 2 * tick_size): "#00FF00",
            "{}-{} deg".format(min_value + 2 * tick_size, min_value + 3 * tick_size): "#FFFF00",
            "{}-{} deg".format(min_value + 3 * tick_size, max_value): "#FF0000",
        },
        position="bottomright",
        draggable=False,
    )
    return dem_map, slope_map


def add_indices(image, nir_band, red_band, blue_band, evi_vars):
    # Add negative cloud
    neg_cloud = image.select("MSK_CLDPRB").multiply(-1).rename("Neg_MSK_CLDPRB")
    nir = image.select(nir_band).divide(10000)
    red = image.select(red_band).divide(10000)
    blue = image.select(blue_band).divide(10000)
    numerator = nir.subtract(red)
    ndvi = (numerator).divide(nir.add(red)).rename("NDVI").clamp(-1, 1)
    # EVI formula taken from: https://en.wikipedia.org/wiki/Enhanced_vegetation_index

    denominator = nir.add(red.multiply(evi_vars["C1"])).subtract(blue.multiply(evi_vars["C2"])).add(evi_vars["L"])
    evi = numerator.divide(denominator).multiply(evi_vars["G"]).rename("EVI").clamp(-1, 1)
    evi2 = (
        numerator.divide(nir.add(evi_vars["L"]).add(red.multiply(evi_vars["C"])))
        .multiply(evi_vars["G"])
        .rename("EVI2")
        .clamp(-1, 1)
    )
    return image.addBands([neg_cloud, ndvi, evi, evi2])


def get_histogram(image, geometry, bins):
    # Get image values as a list
    values = image.reduceRegion(reducer=ee.Reducer.toList(), geometry=geometry, scale=10, maxPixels=1e13).get("NDVI")

    # Convert values to a NumPy array
    values_array = np.array(values.getInfo())

    # Compute the histogram on bins
    hist, bin_edges = np.histogram(values_array, bins=bins)

    return hist, bin_edges


def process_date(
    daterange,
    satellite,
    veg_indices,
    satellites,
    buffer_ee_geometry,
    ee_feature_collection,
    buffer_ee_feature_collection,
    result_df,
):
    start_date, end_date = daterange
    daterange_str = daterange_dates_to_str(start_date, end_date)
    prefix = f"Processing {satellite} - {daterange_str}"
    try:
        attrs = satellites[satellite]
        collection = attrs["collection"]
        collection = collection.filterBounds(buffer_ee_geometry)
        collection = collection.filterDate(start_date, end_date)

        bucket = {}
        for veg_index in veg_indices:
            mosaic_veg_index = collection.qualityMosaic(veg_index)
            fc = geemap.zonal_stats(
                mosaic_veg_index, ee_feature_collection, scale=attrs["scale"], return_fc=True
            ).getInfo()
            mean_veg_index = fc["features"][0]["properties"][veg_index]
            bucket[veg_index] = mean_veg_index
            fc = geemap.zonal_stats(
                mosaic_veg_index, buffer_ee_feature_collection, scale=attrs["scale"], return_fc=True
            ).getInfo()
            buffer_mean_veg_index = fc["features"][0]["properties"][veg_index]
            bucket[f"{veg_index}_buffer"] = buffer_mean_veg_index
            bucket[f"{veg_index}_ratio"] = mean_veg_index / buffer_mean_veg_index
            bucket[f"mosaic_{veg_index}"] = mosaic_veg_index

        # Get median mosaic
        bucket["mosaic_visual_max_ndvi"] = collection.qualityMosaic("NDVI")
        bucket["mosaic_visual_median"] = collection.median()
        bucket["image_visual_least_cloud"] = collection.sort("CLOUDY_PIXEL_PERCENTAGE").first()

        if satellite == "COPERNICUS/S2_SR_HARMONIZED":
            cloud_mask_probability = fc["features"][0]["properties"]["MSK_CLDPRB"] / 100
        else:
            cloud_mask_probability = None
        bucket["Cloud (0 to 1)"] = cloud_mask_probability
        result_df.loc[daterange_str, list(bucket.keys())] = list(bucket.values())
        count = collection.size().getInfo()
        suffix = f" - Processed {count} images"
        write_info(f"{prefix}{suffix}")
    except Exception as e:
        print(e)
        suffix = f" - Imagery not available"
        write_info(f"{prefix}{suffix}")


def write_info(info, center_align=False):
    if center_align:
        st.write(f"<div style='text-align: center; color:#006400;'>{info}</div>", unsafe_allow_html=True)
    else:
        st.write(f"<span style='color:#006400;'>{info}</span>", unsafe_allow_html=True)