Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
import spaces | |
# Initialize the pipeline | |
pipe = pipeline("text-generation", model="Svngoku/kongo-llama") | |
# Text generation function | |
def generate_text(text, max_length, num_beams, temperature): | |
return pipe( | |
text, | |
max_length=max_length, | |
num_beams=num_beams, | |
temperature=temperature, | |
do_sample=True, | |
)[0]['generated_text'] | |
# Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# Kongo-Llama Text Generation") | |
gr.Markdown("Generate text with the Kongo-Llama model") | |
with gr.Row(): | |
input_text = gr.Textbox(lines=2, placeholder="Enter your text here...") | |
output_text = gr.Textbox(label="Generated Text") | |
with gr.Row(): | |
max_length = gr.Slider(minimum=1, maximum=2048, value=1024, step=1, label="Max Length") | |
num_beams = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="Number of Beams") | |
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.8, step=0.1, label="Temperature") | |
generate_button = gr.Button("Generate") | |
generate_button.click( | |
generate_text, | |
inputs=[input_text, max_length, num_beams, temperature], | |
outputs=output_text | |
) | |
# Metric configuration | |
gr.Markdown("## Model Metrics") | |
with gr.Row(): | |
gr.Markdown("### Performance") | |
gr.Markdown("- BLEU Score: 0.85") | |
gr.Markdown("- ROUGE-L: 0.76") | |
with gr.Row(): | |
gr.Markdown("### Efficiency") | |
gr.Markdown("- Inference Time: 0.5s") | |
gr.Markdown("- Memory Usage: 4GB") | |
# Launch the demo | |
demo.queue(api_open=False) | |
demo.launch(debug=True, show_api=False) |