File size: 17,746 Bytes
f1a0148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
from flask_sqlalchemy import SQLAlchemy
from flask_login import UserMixin
from datetime import datetime
import math
from sqlalchemy import func

db = SQLAlchemy()


class User(db.Model, UserMixin):
    id = db.Column(db.Integer, primary_key=True)
    username = db.Column(db.String(100), unique=True, nullable=False)
    hf_id = db.Column(db.String(100), unique=True, nullable=False)
    join_date = db.Column(db.DateTime, default=datetime.utcnow)
    votes = db.relationship("Vote", backref="user", lazy=True)
    show_in_leaderboard = db.Column(db.Boolean, default=True)

    def __repr__(self):
        return f"<User {self.username}>"


class ModelType:
    TTS = "tts"
    CONVERSATIONAL = "conversational"


class Model(db.Model):
    id = db.Column(db.String(100), primary_key=True)
    name = db.Column(db.String(100), nullable=False)
    model_type = db.Column(db.String(20), nullable=False)  # 'tts' or 'conversational'
    # Fix ambiguous foreign keys by specifying which foreign key to use
    votes = db.relationship(
        "Vote",
        primaryjoin="or_(Model.id==Vote.model_chosen, Model.id==Vote.model_rejected)",
        viewonly=True,
    )
    current_elo = db.Column(db.Float, default=1500.0)
    win_count = db.Column(db.Integer, default=0)
    match_count = db.Column(db.Integer, default=0)
    is_open = db.Column(db.Boolean, default=False)
    is_active = db.Column(
        db.Boolean, default=True
    )  # Whether the model is active and can be voted on
    model_url = db.Column(db.String(255), nullable=True)

    @property
    def win_rate(self):
        if self.match_count == 0:
            return 0
        return (self.win_count / self.match_count) * 100

    def __repr__(self):
        return f"<Model {self.name} ({self.model_type})>"


class Vote(db.Model):
    id = db.Column(db.Integer, primary_key=True)
    user_id = db.Column(db.Integer, db.ForeignKey("user.id"), nullable=True)
    text = db.Column(db.String(1000), nullable=False)
    vote_date = db.Column(db.DateTime, default=datetime.utcnow)
    model_chosen = db.Column(db.String(100), db.ForeignKey("model.id"), nullable=False)
    model_rejected = db.Column(
        db.String(100), db.ForeignKey("model.id"), nullable=False
    )
    model_type = db.Column(db.String(20), nullable=False)  # 'tts' or 'conversational'

    chosen = db.relationship(
        "Model",
        foreign_keys=[model_chosen],
        backref=db.backref("chosen_votes", lazy=True),
    )
    rejected = db.relationship(
        "Model",
        foreign_keys=[model_rejected],
        backref=db.backref("rejected_votes", lazy=True),
    )

    def __repr__(self):
        return f"<Vote {self.id}: {self.model_chosen} over {self.model_rejected} ({self.model_type})>"


class EloHistory(db.Model):
    id = db.Column(db.Integer, primary_key=True)
    model_id = db.Column(db.String(100), db.ForeignKey("model.id"), nullable=False)
    timestamp = db.Column(db.DateTime, default=datetime.utcnow)
    elo_score = db.Column(db.Float, nullable=False)
    vote_id = db.Column(db.Integer, db.ForeignKey("vote.id"), nullable=True)
    model_type = db.Column(db.String(20), nullable=False)  # 'tts' or 'conversational'

    model = db.relationship("Model", backref=db.backref("elo_history", lazy=True))
    vote = db.relationship("Vote", backref=db.backref("elo_changes", lazy=True))

    def __repr__(self):
        return f"<EloHistory {self.model_id}: {self.elo_score} at {self.timestamp} ({self.model_type})>"


def calculate_elo_change(winner_elo, loser_elo, k_factor=32):
    """Calculate Elo rating changes for a match."""
    expected_winner = 1 / (1 + math.pow(10, (loser_elo - winner_elo) / 400))
    expected_loser = 1 / (1 + math.pow(10, (winner_elo - loser_elo) / 400))

    winner_new_elo = winner_elo + k_factor * (1 - expected_winner)
    loser_new_elo = loser_elo + k_factor * (0 - expected_loser)

    return winner_new_elo, loser_new_elo


def record_vote(user_id, text, chosen_model_id, rejected_model_id, model_type):
    """Record a vote and update Elo ratings."""
    # Create the vote
    vote = Vote(
        user_id=user_id,  # Can be None for anonymous votes
        text=text,
        model_chosen=chosen_model_id,
        model_rejected=rejected_model_id,
        model_type=model_type,
    )
    db.session.add(vote)
    db.session.flush()  # Get the vote ID without committing

    # Get the models
    chosen_model = Model.query.filter_by(
        id=chosen_model_id, model_type=model_type
    ).first()
    rejected_model = Model.query.filter_by(
        id=rejected_model_id, model_type=model_type
    ).first()

    if not chosen_model or not rejected_model:
        db.session.rollback()
        return None, "One or both models not found for the specified model type"

    # Calculate new Elo ratings
    new_chosen_elo, new_rejected_elo = calculate_elo_change(
        chosen_model.current_elo, rejected_model.current_elo
    )

    # Update model stats
    chosen_model.current_elo = new_chosen_elo
    chosen_model.win_count += 1
    chosen_model.match_count += 1

    rejected_model.current_elo = new_rejected_elo
    rejected_model.match_count += 1

    # Record Elo history
    chosen_history = EloHistory(
        model_id=chosen_model_id,
        elo_score=new_chosen_elo,
        vote_id=vote.id,
        model_type=model_type,
    )

    rejected_history = EloHistory(
        model_id=rejected_model_id,
        elo_score=new_rejected_elo,
        vote_id=vote.id,
        model_type=model_type,
    )

    db.session.add_all([chosen_history, rejected_history])
    db.session.commit()

    return vote, None


def get_leaderboard_data(model_type):
    """
    Get leaderboard data for the specified model type.

    Args:
        model_type (str): The model type ('tts' or 'conversational')

    Returns:
        list: List of dictionaries containing model data for the leaderboard
    """
    query = Model.query.filter_by(model_type=model_type)

    # Get models ordered by ELO score
    models = query.order_by(Model.current_elo.desc()).all()

    result = []
    for rank, model in enumerate(models, 1):
        # Determine tier based on rank
        if rank <= 2:
            tier = "tier-s"
        elif rank <= 4:
            tier = "tier-a"
        elif rank <= 7:
            tier = "tier-b"
        else:
            tier = ""

        result.append(
            {
                "rank": rank,
                "id": model.id,
                "name": model.name,
                "model_url": model.model_url,
                "win_rate": f"{model.win_rate:.0f}%",
                "total_votes": model.match_count,
                "elo": int(model.current_elo),
                "tier": tier,
                "is_open": model.is_open,
            }
        )

    return result


def get_user_leaderboard(user_id, model_type):
    """
    Get personalized leaderboard data for a specific user.

    Args:
        user_id (int): The user ID
        model_type (str): The model type ('tts' or 'conversational')

    Returns:
        list: List of dictionaries containing model data for the user's personal leaderboard
    """
    # Get all models of the specified type
    models = Model.query.filter_by(model_type=model_type).all()

    # Get user's votes
    user_votes = Vote.query.filter_by(user_id=user_id, model_type=model_type).all()

    # Calculate win counts and match counts for each model based on user's votes
    model_stats = {model.id: {"wins": 0, "matches": 0} for model in models}

    for vote in user_votes:
        model_stats[vote.model_chosen]["wins"] += 1
        model_stats[vote.model_chosen]["matches"] += 1
        model_stats[vote.model_rejected]["matches"] += 1

    # Calculate win rates and prepare result
    result = []
    for model in models:
        stats = model_stats[model.id]
        win_rate = (
            (stats["wins"] / stats["matches"] * 100) if stats["matches"] > 0 else 0
        )

        # Only include models the user has voted on
        if stats["matches"] > 0:
            result.append(
                {
                    "id": model.id,
                    "name": model.name,
                    "model_url": model.model_url,
                    "win_rate": f"{win_rate:.0f}%",
                    "total_votes": stats["matches"],
                    "wins": stats["wins"],
                    "is_open": model.is_open,
                }
            )

    # Sort by win rate descending
    result.sort(key=lambda x: float(x["win_rate"].rstrip("%")), reverse=True)

    # Add rank
    for i, item in enumerate(result, 1):
        item["rank"] = i

    return result


def get_historical_leaderboard_data(model_type, target_date=None):
    """
    Get leaderboard data at a specific date in history.

    Args:
        model_type (str): The model type ('tts' or 'conversational')
        target_date (datetime): The target date for historical data, defaults to current time

    Returns:
        list: List of dictionaries containing model data for the historical leaderboard
    """
    if not target_date:
        target_date = datetime.utcnow()

    # Get all models of the specified type
    models = Model.query.filter_by(model_type=model_type).all()

    # Create a result list for the models
    result = []

    for model in models:
        # Get the most recent EloHistory entry for each model before the target date
        elo_entry = (
            EloHistory.query.filter(
                EloHistory.model_id == model.id,
                EloHistory.model_type == model_type,
                EloHistory.timestamp <= target_date,
            )
            .order_by(EloHistory.timestamp.desc())
            .first()
        )

        # Skip models that have no history before the target date
        if not elo_entry:
            continue

        # Count wins and matches up to the target date
        match_count = Vote.query.filter(
            db.or_(Vote.model_chosen == model.id, Vote.model_rejected == model.id),
            Vote.model_type == model_type,
            Vote.vote_date <= target_date,
        ).count()

        win_count = Vote.query.filter(
            Vote.model_chosen == model.id,
            Vote.model_type == model_type,
            Vote.vote_date <= target_date,
        ).count()

        # Calculate win rate
        win_rate = (win_count / match_count * 100) if match_count > 0 else 0

        # Add to result
        result.append(
            {
                "id": model.id,
                "name": model.name,
                "model_url": model.model_url,
                "win_rate": f"{win_rate:.0f}%",
                "total_votes": match_count,
                "elo": int(elo_entry.elo_score),
                "is_open": model.is_open,
            }
        )

    # Sort by ELO score descending
    result.sort(key=lambda x: x["elo"], reverse=True)

    # Add rank and tier
    for i, item in enumerate(result, 1):
        item["rank"] = i
        # Determine tier based on rank
        if i <= 2:
            item["tier"] = "tier-s"
        elif i <= 4:
            item["tier"] = "tier-a"
        elif i <= 7:
            item["tier"] = "tier-b"
        else:
            item["tier"] = ""

    return result


def get_key_historical_dates(model_type):
    """
    Get a list of key dates in the leaderboard history.

    Args:
        model_type (str): The model type ('tts' or 'conversational')

    Returns:
        list: List of datetime objects representing key dates
    """
    # Get first and most recent vote dates
    first_vote = (
        Vote.query.filter_by(model_type=model_type)
        .order_by(Vote.vote_date.asc())
        .first()
    )
    last_vote = (
        Vote.query.filter_by(model_type=model_type)
        .order_by(Vote.vote_date.desc())
        .first()
    )

    if not first_vote or not last_vote:
        return []

    # Generate a list of key dates - first day of each month between the first and last vote
    dates = []
    current_date = first_vote.vote_date.replace(day=1)
    end_date = last_vote.vote_date

    while current_date <= end_date:
        dates.append(current_date)
        # Move to next month
        if current_date.month == 12:
            current_date = current_date.replace(year=current_date.year + 1, month=1)
        else:
            current_date = current_date.replace(month=current_date.month + 1)

    # Add latest date
    if dates and dates[-1].month != end_date.month or dates[-1].year != end_date.year:
        dates.append(end_date)

    return dates


def insert_initial_models():
    """Insert initial models into the database."""
    tts_models = [
        Model(
            id="eleven-multilingual-v2",
            name="Eleven Multilingual v2",
            model_type=ModelType.TTS,
            is_open=False,
            model_url="https://elevenlabs.io/",
        ),
        Model(
            id="eleven-turbo-v2.5",
            name="Eleven Turbo v2.5",
            model_type=ModelType.TTS,
            is_open=False,
            model_url="https://elevenlabs.io/",
        ),
        Model(
            id="eleven-flash-v2.5",
            name="Eleven Flash v2.5",
            model_type=ModelType.TTS,
            is_open=False,
            model_url="https://elevenlabs.io/",
        ),
        Model(
            id="cartesia-sonic-2",
            name="Cartesia Sonic 2",
            model_type=ModelType.TTS,
            is_open=False,
            model_url="https://cartesia.ai/",
        ),
        Model(
            id="spark-tts",
            name="Spark TTS",
            model_type=ModelType.TTS,
            is_open=False,
            model_url="https://github.com/SparkAudio/Spark-TTS",
        ),
        Model(
            id="playht-2.0",
            name="PlayHT 2.0",
            model_type=ModelType.TTS,
            is_open=False,
            model_url="https://play.ht/",
        ),
        Model(
            id="styletts2",
            name="StyleTTS 2",
            model_type=ModelType.TTS,
            is_open=True,
            model_url="https://github.com/yl4579/StyleTTS2",
        ),
        Model(
            id="kokoro-v1",
            name="Kokoro v1.0",
            model_type=ModelType.TTS,
            is_open=True,
            model_url="https://huggingface.co/hexgrad/Kokoro-82M",
        ),
        Model(
            id="cosyvoice-2.0",
            name="CosyVoice 2.0",
            model_type=ModelType.TTS,
            is_open=True,
            model_url="https://github.com/FunAudioLLM/CosyVoice",
        ),
        Model(
            id="papla-p1",
            name="Papla P1",
            model_type=ModelType.TTS,
            is_open=False,
            model_url="https://papla.media/",
        ),
        Model(
            id="hume-octave",
            name="Hume Octave",
            model_type=ModelType.TTS,
            is_open=False,
            model_url="https://hume.ai/",
        ),
        Model(
            id="megatts3",
            name="MegaTTS 3",
            model_type=ModelType.TTS,
            is_open=True,
            model_url="https://github.com/bytedance/MegaTTS3",
        ),
    ]
    conversational_models = [
        Model(
            id="csm-1b",
            name="CSM 1B",
            model_type=ModelType.CONVERSATIONAL,
            is_open=True,
            model_url="https://huggingface.co/sesame/csm-1b",
        ),
        Model(
            id="playdialog-1.0",
            name="PlayDialog 1.0",
            model_type=ModelType.CONVERSATIONAL,
            is_open=False,
            model_url="https://play.ht/",
        ),
        Model(
            id="dia-1.6b",
            name="Dia 1.6B",
            model_type=ModelType.CONVERSATIONAL,
            is_open=True,
            model_url="https://huggingface.co/nari-labs/Dia-1.6B",
        ),
    ]

    all_models = tts_models + conversational_models

    for model in all_models:
        existing = Model.query.filter_by(
            id=model.id, model_type=model.model_type
        ).first()
        if not existing:
            db.session.add(model)
        else:
            # Update model attributes if they've changed, but preserve other data
            existing.name = model.name
            existing.is_open = model.is_open
            if model.is_active is not None:
                existing.is_active = model.is_active

    db.session.commit()


def get_top_voters(limit=10):
    """
    Get the top voters by number of votes.
    
    Args:
        limit (int): Number of users to return
        
    Returns:
        list: List of dictionaries containing user data and vote counts
    """
    # Query users who have opted in to the leaderboard and have at least one vote
    top_users = db.session.query(
        User, func.count(Vote.id).label('vote_count')
    ).join(Vote).filter(
        User.show_in_leaderboard == True
    ).group_by(User.id).order_by(
        func.count(Vote.id).desc()
    ).limit(limit).all()
    
    result = []
    for i, (user, vote_count) in enumerate(top_users, 1):
        result.append({
            "rank": i,
            "username": user.username,
            "vote_count": vote_count,
            "join_date": user.join_date.strftime("%b %d, %Y")
        })
    
    return result


def toggle_user_leaderboard_visibility(user_id):
    """
    Toggle whether a user appears in the voters leaderboard
    
    Args:
        user_id (int): The user ID
        
    Returns:
        bool: New visibility state
    """
    user = User.query.get(user_id)
    if not user:
        return None
        
    user.show_in_leaderboard = not user.show_in_leaderboard
    db.session.commit()
    
    return user.show_in_leaderboard