Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 7,211 Bytes
f1a0148 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
# TODO: V2 of TTS Router
# Currently just use current TTS router.
import os
import json
from dotenv import load_dotenv
import fal_client
import requests
import time
import io
from pyht import Client as PyhtClient
from pyht.client import TTSOptions
import base64
import tempfile
import random
load_dotenv()
ZEROGPU_TOKENS = os.getenv("ZEROGPU_TOKENS", "").split(",")
def get_zerogpu_token():
return random.choice(ZEROGPU_TOKENS)
model_mapping = {
"eleven-multilingual-v2": {
"provider": "elevenlabs",
"model": "eleven_multilingual_v2",
},
"eleven-turbo-v2.5": {
"provider": "elevenlabs",
"model": "eleven_turbo_v2_5",
},
"eleven-flash-v2.5": {
"provider": "elevenlabs",
"model": "eleven_flash_v2_5",
},
"cartesia-sonic-2": {
"provider": "cartesia",
"model": "sonic-2",
},
"spark-tts": {
"provider": "spark",
"model": "spark-tts",
},
"playht-2.0": {
"provider": "playht",
"model": "PlayHT2.0",
},
"styletts2": {
"provider": "styletts",
"model": "styletts2",
},
"kokoro-v1": {
"provider": "kokoro",
"model": "kokoro_v1",
},
"cosyvoice-2.0": {
"provider": "cosyvoice",
"model": "cosyvoice_2_0",
},
"papla-p1": {
"provider": "papla",
"model": "papla_p1",
},
"hume-octave": {
"provider": "hume",
"model": "octave",
},
"megatts3": {
"provider": "megatts3",
"model": "megatts3",
},
}
url = "https://tts-agi-tts-router-v2.hf.space/tts"
headers = {
"accept": "application/json",
"Content-Type": "application/json",
"Authorization": f'Bearer {os.getenv("HF_TOKEN")}',
}
data = {"text": "string", "provider": "string", "model": "string"}
def predict_csm(script):
result = fal_client.subscribe(
"fal-ai/csm-1b",
arguments={
# "scene": [{
# "text": "Hey how are you doing.",
# "speaker_id": 0
# }, {
# "text": "Pretty good, pretty good.",
# "speaker_id": 1
# }, {
# "text": "I'm great, so happy to be speaking to you.",
# "speaker_id": 0
# }]
"scene": script
},
with_logs=True,
)
return requests.get(result["audio"]["url"]).content
def predict_playdialog(script):
# Initialize the PyHT client
pyht_client = PyhtClient(
user_id=os.getenv("PLAY_USERID"),
api_key=os.getenv("PLAY_SECRETKEY"),
)
# Define the voices
voice_1 = "s3://voice-cloning-zero-shot/baf1ef41-36b6-428c-9bdf-50ba54682bd8/original/manifest.json"
voice_2 = "s3://voice-cloning-zero-shot/e040bd1b-f190-4bdb-83f0-75ef85b18f84/original/manifest.json"
# Convert script format from CSM to PlayDialog format
if isinstance(script, list):
# Process script in CSM format (list of dictionaries)
text = ""
for turn in script:
speaker_id = turn.get("speaker_id", 0)
prefix = "Host 1:" if speaker_id == 0 else "Host 2:"
text += f"{prefix} {turn['text']}\n"
else:
# If it's already a string, use as is
text = script
# Set up TTSOptions
options = TTSOptions(
voice=voice_1, voice_2=voice_2, turn_prefix="Host 1:", turn_prefix_2="Host 2:"
)
# Generate audio using PlayDialog
audio_chunks = []
for chunk in pyht_client.tts(text, options, voice_engine="PlayDialog"):
audio_chunks.append(chunk)
# Combine all chunks into a single audio file
return b"".join(audio_chunks)
def predict_dia(script):
# Convert script to the required format for Dia
if isinstance(script, list):
# Convert from list of dictionaries to formatted string
formatted_text = ""
for turn in script:
speaker_id = turn.get("speaker_id", 0)
speaker_tag = "[S1]" if speaker_id == 0 else "[S2]"
text = turn.get("text", "").strip().replace("[S1]", "").replace("[S2]", "")
formatted_text += f"{speaker_tag} {text} "
text = formatted_text.strip()
else:
# If it's already a string, use as is
text = script
print(text)
# Make a POST request to initiate the dialogue generation
headers = {
# "Content-Type": "application/json",
"Authorization": f"Bearer {get_zerogpu_token()}"
}
response = requests.post(
"https://mrfakename-dia-1-6b.hf.space/gradio_api/call/generate_dialogue",
headers=headers,
json={"data": [text]},
)
# Extract the event ID from the response
event_id = response.json()["event_id"]
# Make a streaming request to get the generated dialogue
stream_url = f"https://mrfakename-dia-1-6b.hf.space/gradio_api/call/generate_dialogue/{event_id}"
# Use a streaming request to get the audio data
with requests.get(stream_url, headers=headers, stream=True) as stream_response:
# Process the streaming response
for line in stream_response.iter_lines():
if line:
if line.startswith(b"data: ") and not line.startswith(b"data: null"):
audio_data = line[6:]
return requests.get(json.loads(audio_data)[0]["url"]).content
def predict_tts(text, model):
global client
print(f"Predicting TTS for {model}")
# Exceptions: special models that shouldn't be passed to the router
if model == "csm-1b":
return predict_csm(text)
elif model == "playdialog-1.0":
return predict_playdialog(text)
elif model == "dia-1.6b":
return predict_dia(text)
if not model in model_mapping:
raise ValueError(f"Model {model} not found")
result = requests.post(
url,
headers=headers,
data=json.dumps(
{
"text": text,
"provider": model_mapping[model]["provider"],
"model": model_mapping[model]["model"],
}
),
)
response_json = result.json()
audio_data = response_json["audio_data"] # base64 encoded audio data
extension = response_json["extension"]
# Decode the base64 audio data
audio_bytes = base64.b64decode(audio_data)
# Create a temporary file to store the audio data
with tempfile.NamedTemporaryFile(delete=False, suffix=f".{extension}") as temp_file:
temp_file.write(audio_bytes)
temp_path = temp_file.name
return temp_path
if __name__ == "__main__":
print(
predict_dia(
[
{"text": "Hello, how are you?", "speaker_id": 0},
{"text": "I'm great, thank you!", "speaker_id": 1},
]
)
)
# print("Predicting PlayDialog")
# print(
# predict_playdialog(
# [
# {"text": "Hey how are you doing.", "speaker_id": 0},
# {"text": "Pretty good, pretty good.", "speaker_id": 1},
# {"text": "I'm great, so happy to be speaking to you.", "speaker_id": 0},
# ]
# )
# )
|