File size: 7,211 Bytes
f1a0148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# TODO: V2 of TTS Router
# Currently just use current TTS router.
import os
import json
from dotenv import load_dotenv
import fal_client
import requests
import time
import io
from pyht import Client as PyhtClient
from pyht.client import TTSOptions
import base64
import tempfile
import random

load_dotenv()

ZEROGPU_TOKENS = os.getenv("ZEROGPU_TOKENS", "").split(",")


def get_zerogpu_token():
    return random.choice(ZEROGPU_TOKENS)


model_mapping = {
    "eleven-multilingual-v2": {
        "provider": "elevenlabs",
        "model": "eleven_multilingual_v2",
    },
    "eleven-turbo-v2.5": {
        "provider": "elevenlabs",
        "model": "eleven_turbo_v2_5",
    },
    "eleven-flash-v2.5": {
        "provider": "elevenlabs",
        "model": "eleven_flash_v2_5",
    },
    "cartesia-sonic-2": {
        "provider": "cartesia",
        "model": "sonic-2",
    },
    "spark-tts": {
        "provider": "spark",
        "model": "spark-tts",
    },
    "playht-2.0": {
        "provider": "playht",
        "model": "PlayHT2.0",
    },
    "styletts2": {
        "provider": "styletts",
        "model": "styletts2",
    },
    "kokoro-v1": {
        "provider": "kokoro",
        "model": "kokoro_v1",
    },
    "cosyvoice-2.0": {
        "provider": "cosyvoice",
        "model": "cosyvoice_2_0",
    },
    "papla-p1": {
        "provider": "papla",
        "model": "papla_p1",
    },
    "hume-octave": {
        "provider": "hume",
        "model": "octave",
    },
    "megatts3": {
        "provider": "megatts3",
        "model": "megatts3",
    },
}

url = "https://tts-agi-tts-router-v2.hf.space/tts"
headers = {
    "accept": "application/json",
    "Content-Type": "application/json",
    "Authorization": f'Bearer {os.getenv("HF_TOKEN")}',
}
data = {"text": "string", "provider": "string", "model": "string"}


def predict_csm(script):
    result = fal_client.subscribe(
        "fal-ai/csm-1b",
        arguments={
            # "scene": [{
            #     "text": "Hey how are you doing.",
            #     "speaker_id": 0
            # }, {
            #     "text": "Pretty good, pretty good.",
            #     "speaker_id": 1
            # }, {
            #     "text": "I'm great, so happy to be speaking to you.",
            #     "speaker_id": 0
            # }]
            "scene": script
        },
        with_logs=True,
    )
    return requests.get(result["audio"]["url"]).content


def predict_playdialog(script):
    # Initialize the PyHT client
    pyht_client = PyhtClient(
        user_id=os.getenv("PLAY_USERID"),
        api_key=os.getenv("PLAY_SECRETKEY"),
    )

    # Define the voices
    voice_1 = "s3://voice-cloning-zero-shot/baf1ef41-36b6-428c-9bdf-50ba54682bd8/original/manifest.json"
    voice_2 = "s3://voice-cloning-zero-shot/e040bd1b-f190-4bdb-83f0-75ef85b18f84/original/manifest.json"

    # Convert script format from CSM to PlayDialog format
    if isinstance(script, list):
        # Process script in CSM format (list of dictionaries)
        text = ""
        for turn in script:
            speaker_id = turn.get("speaker_id", 0)
            prefix = "Host 1:" if speaker_id == 0 else "Host 2:"
            text += f"{prefix} {turn['text']}\n"
    else:
        # If it's already a string, use as is
        text = script

    # Set up TTSOptions
    options = TTSOptions(
        voice=voice_1, voice_2=voice_2, turn_prefix="Host 1:", turn_prefix_2="Host 2:"
    )

    # Generate audio using PlayDialog
    audio_chunks = []
    for chunk in pyht_client.tts(text, options, voice_engine="PlayDialog"):
        audio_chunks.append(chunk)

    # Combine all chunks into a single audio file
    return b"".join(audio_chunks)


def predict_dia(script):
    # Convert script to the required format for Dia
    if isinstance(script, list):
        # Convert from list of dictionaries to formatted string
        formatted_text = ""
        for turn in script:
            speaker_id = turn.get("speaker_id", 0)
            speaker_tag = "[S1]" if speaker_id == 0 else "[S2]"
            text = turn.get("text", "").strip().replace("[S1]", "").replace("[S2]", "")
            formatted_text += f"{speaker_tag} {text} "
        text = formatted_text.strip()
    else:
        # If it's already a string, use as is
        text = script
    print(text)
    # Make a POST request to initiate the dialogue generation
    headers = {
        # "Content-Type": "application/json",
        "Authorization": f"Bearer {get_zerogpu_token()}"
    }

    response = requests.post(
        "https://mrfakename-dia-1-6b.hf.space/gradio_api/call/generate_dialogue",
        headers=headers,
        json={"data": [text]},
    )

    # Extract the event ID from the response
    event_id = response.json()["event_id"]

    # Make a streaming request to get the generated dialogue
    stream_url = f"https://mrfakename-dia-1-6b.hf.space/gradio_api/call/generate_dialogue/{event_id}"

    # Use a streaming request to get the audio data
    with requests.get(stream_url, headers=headers, stream=True) as stream_response:
        # Process the streaming response
        for line in stream_response.iter_lines():
            if line:
                if line.startswith(b"data: ") and not line.startswith(b"data: null"):
                    audio_data = line[6:]
                    return requests.get(json.loads(audio_data)[0]["url"]).content


def predict_tts(text, model):
    global client
    print(f"Predicting TTS for {model}")
    # Exceptions: special models that shouldn't be passed to the router
    if model == "csm-1b":
        return predict_csm(text)
    elif model == "playdialog-1.0":
        return predict_playdialog(text)
    elif model == "dia-1.6b":
        return predict_dia(text)

    if not model in model_mapping:
        raise ValueError(f"Model {model} not found")

    result = requests.post(
        url,
        headers=headers,
        data=json.dumps(
            {
                "text": text,
                "provider": model_mapping[model]["provider"],
                "model": model_mapping[model]["model"],
            }
        ),
    )

    response_json = result.json()

    audio_data = response_json["audio_data"]  # base64 encoded audio data
    extension = response_json["extension"]
    # Decode the base64 audio data
    audio_bytes = base64.b64decode(audio_data)

    # Create a temporary file to store the audio data
    with tempfile.NamedTemporaryFile(delete=False, suffix=f".{extension}") as temp_file:
        temp_file.write(audio_bytes)
        temp_path = temp_file.name

    return temp_path


if __name__ == "__main__":
    print(
        predict_dia(
            [
                {"text": "Hello, how are you?", "speaker_id": 0},
                {"text": "I'm great, thank you!", "speaker_id": 1},
            ]
        )
    )
    # print("Predicting PlayDialog")
    # print(
    #     predict_playdialog(
    #         [
    #             {"text": "Hey how are you doing.", "speaker_id": 0},
    #             {"text": "Pretty good, pretty good.", "speaker_id": 1},
    #             {"text": "I'm great, so happy to be speaking to you.", "speaker_id": 0},
    #         ]
    #     )
    # )