File size: 57,643 Bytes
f1a0148
 
 
 
 
d462da9
f1a0148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3a898b
f1a0148
 
 
d462da9
 
 
 
 
 
 
 
 
f1a0148
d462da9
f1a0148
d462da9
 
f1a0148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3892fc6
d462da9
b8ff2a8
d462da9
b8ff2a8
f1a0148
 
 
d462da9
 
f1a0148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d462da9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1a0148
d462da9
f1a0148
 
 
 
 
 
d462da9
f1a0148
 
 
 
d462da9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1a0148
 
 
 
 
 
 
 
 
 
 
 
d462da9
 
 
 
 
 
 
f1a0148
d462da9
 
 
 
 
 
f1a0148
 
 
 
d462da9
f1a0148
 
 
 
 
 
 
 
 
 
 
d462da9
f1a0148
 
 
 
 
 
 
 
 
 
 
 
 
d462da9
 
f1a0148
 
 
 
d462da9
 
 
 
 
 
 
 
 
f1a0148
d462da9
f1a0148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d462da9
 
 
f1a0148
 
d462da9
f1a0148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
807d96f
f1a0148
 
 
 
807d96f
 
 
 
f1a0148
 
 
 
 
807d96f
 
 
 
 
 
 
 
f1a0148
807d96f
 
 
 
f1a0148
 
807d96f
 
f1a0148
 
807d96f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1a0148
 
807d96f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1a0148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fed627
d462da9
 
 
 
 
 
 
 
d40e945
f1a0148
 
 
 
d462da9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1a0148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d462da9
f1a0148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
import os
from huggingface_hub import HfApi, hf_hub_download
from apscheduler.schedulers.background import BackgroundScheduler
from concurrent.futures import ThreadPoolExecutor
from datetime import datetime
import threading # Added for locking

year = datetime.now().year
month = datetime.now().month

# Check if running in a Huggin Face Space
IS_SPACES = False
if os.getenv("SPACE_REPO_NAME"):
    print("Running in a Hugging Face Space 🤗")
    IS_SPACES = True

    # Setup database sync for HF Spaces
    if not os.path.exists("instance/tts_arena.db"):
        os.makedirs("instance", exist_ok=True)
        try:
            print("Database not found, downloading from HF dataset...")
            hf_hub_download(
                repo_id="TTS-AGI/database-arena-v2",
                filename="tts_arena.db",
                repo_type="dataset",
                local_dir="instance",
                token=os.getenv("HF_TOKEN"),
            )
            print("Database downloaded successfully ✅")
        except Exception as e:
            print(f"Error downloading database from HF dataset: {str(e)} ⚠️")

from flask import (
    Flask,
    render_template,
    g,
    request,
    jsonify,
    send_file,
    redirect,
    url_for,
    session,
    abort,
)
from flask_login import LoginManager, current_user
from models import *
from auth import auth, init_oauth, is_admin
from admin import admin
import os
from dotenv import load_dotenv
from flask_limiter import Limiter
from flask_limiter.util import get_remote_address
import uuid
import tempfile
import shutil
from tts import predict_tts
import random
import json
from datetime import datetime, timedelta
from flask_migrate import Migrate
import requests
import functools
import time # Added for potential retries


# Load environment variables
if not IS_SPACES:
    load_dotenv()  # Only load .env if not running in a Hugging Face Space

app = Flask(__name__)
app.config["SECRET_KEY"] = os.getenv("SECRET_KEY", os.urandom(24))
app.config["SQLALCHEMY_DATABASE_URI"] = os.getenv(
    "DATABASE_URI", "sqlite:///tts_arena.db"
)
app.config["SQLALCHEMY_TRACK_MODIFICATIONS"] = False
app.config["SESSION_COOKIE_SECURE"] = True
app.config["SESSION_COOKIE_SAMESITE"] = (
    "None" if IS_SPACES else "Lax"
)  # HF Spaces uses iframes to load the app, so we need to set SAMESITE to None
app.config["PERMANENT_SESSION_LIFETIME"] = timedelta(days=30)  # Set to desired duration

# Force HTTPS when running in HuggingFace Spaces
if IS_SPACES:
    app.config["PREFERRED_URL_SCHEME"] = "https"

# Cloudflare Turnstile settings
app.config["TURNSTILE_ENABLED"] = (
    os.getenv("TURNSTILE_ENABLED", "False").lower() == "true"
)
app.config["TURNSTILE_SITE_KEY"] = os.getenv("TURNSTILE_SITE_KEY", "")
app.config["TURNSTILE_SECRET_KEY"] = os.getenv("TURNSTILE_SECRET_KEY", "")
app.config["TURNSTILE_VERIFY_URL"] = (
    "https://challenges.cloudflare.com/turnstile/v0/siteverify"
)

migrate = Migrate(app, db)

# Initialize extensions
db.init_app(app)
login_manager = LoginManager()
login_manager.init_app(app)
login_manager.login_view = "auth.login"

# Initialize OAuth
init_oauth(app)

# Configure rate limits
limiter = Limiter(
    app=app,
    key_func=get_remote_address,
    default_limits=["2000 per day", "50 per minute"],
    storage_uri="memory://",
)

# TTS Cache Configuration - Read from environment
TTS_CACHE_SIZE = int(os.getenv("TTS_CACHE_SIZE", "10"))
CACHE_AUDIO_SUBDIR = "cache"
tts_cache = {} # sentence -> {model_a, model_b, audio_a, audio_b, created_at}
tts_cache_lock = threading.Lock()
cache_executor = ThreadPoolExecutor(max_workers=2, thread_name_prefix='CacheReplacer')
all_harvard_sentences = [] # Keep the full list available

# Create temp directories
TEMP_AUDIO_DIR = os.path.join(tempfile.gettempdir(), "tts_arena_audio")
CACHE_AUDIO_DIR = os.path.join(TEMP_AUDIO_DIR, CACHE_AUDIO_SUBDIR)
os.makedirs(TEMP_AUDIO_DIR, exist_ok=True)
os.makedirs(CACHE_AUDIO_DIR, exist_ok=True) # Ensure cache subdir exists


# Store active TTS sessions
app.tts_sessions = {}
tts_sessions = app.tts_sessions

# Store active conversational sessions
app.conversational_sessions = {}
conversational_sessions = app.conversational_sessions

# Register blueprints
app.register_blueprint(auth, url_prefix="/auth")
app.register_blueprint(admin)


@login_manager.user_loader
def load_user(user_id):
    return User.query.get(int(user_id))


@app.before_request
def before_request():
    g.user = current_user
    g.is_admin = is_admin(current_user)

    # Ensure HTTPS for HuggingFace Spaces environment
    if IS_SPACES and request.headers.get("X-Forwarded-Proto") == "http":
        url = request.url.replace("http://", "https://", 1)
        return redirect(url, code=301)

    # Check if Turnstile verification is required
    if app.config["TURNSTILE_ENABLED"]:
        # Exclude verification routes
        excluded_routes = ["verify_turnstile", "turnstile_page", "static"]
        if request.endpoint not in excluded_routes:
            # Check if user is verified
            if not session.get("turnstile_verified"):
                # Save original URL for redirect after verification
                redirect_url = request.url
                # Force HTTPS in HuggingFace Spaces
                if IS_SPACES and redirect_url.startswith("http://"):
                    redirect_url = redirect_url.replace("http://", "https://", 1)

                # If it's an API request, return a JSON response
                if request.path.startswith("/api/"):
                    return jsonify({"error": "Turnstile verification required"}), 403
                # For regular requests, redirect to verification page
                return redirect(url_for("turnstile_page", redirect_url=redirect_url))
            else:
                # Check if verification has expired (default: 24 hours)
                verification_timeout = (
                    int(os.getenv("TURNSTILE_TIMEOUT_HOURS", "24")) * 3600
                )  # Convert hours to seconds
                verified_at = session.get("turnstile_verified_at", 0)
                current_time = datetime.utcnow().timestamp()

                if current_time - verified_at > verification_timeout:
                    # Verification expired, clear status and redirect to verification page
                    session.pop("turnstile_verified", None)
                    session.pop("turnstile_verified_at", None)

                    redirect_url = request.url
                    # Force HTTPS in HuggingFace Spaces
                    if IS_SPACES and redirect_url.startswith("http://"):
                        redirect_url = redirect_url.replace("http://", "https://", 1)

                    if request.path.startswith("/api/"):
                        return jsonify({"error": "Turnstile verification expired"}), 403
                    return redirect(
                        url_for("turnstile_page", redirect_url=redirect_url)
                    )


@app.route("/turnstile", methods=["GET"])
def turnstile_page():
    """Display Cloudflare Turnstile verification page"""
    redirect_url = request.args.get("redirect_url", url_for("arena", _external=True))

    # Force HTTPS in HuggingFace Spaces
    if IS_SPACES and redirect_url.startswith("http://"):
        redirect_url = redirect_url.replace("http://", "https://", 1)

    return render_template(
        "turnstile.html",
        turnstile_site_key=app.config["TURNSTILE_SITE_KEY"],
        redirect_url=redirect_url,
    )


@app.route("/verify-turnstile", methods=["POST"])
def verify_turnstile():
    """Verify Cloudflare Turnstile token"""
    token = request.form.get("cf-turnstile-response")
    redirect_url = request.form.get("redirect_url", url_for("arena", _external=True))

    # Force HTTPS in HuggingFace Spaces
    if IS_SPACES and redirect_url.startswith("http://"):
        redirect_url = redirect_url.replace("http://", "https://", 1)

    if not token:
        # If AJAX request, return JSON error
        if request.headers.get("X-Requested-With") == "XMLHttpRequest":
            return (
                jsonify({"success": False, "error": "Missing verification token"}),
                400,
            )
        # Otherwise redirect back to turnstile page
        return redirect(url_for("turnstile_page", redirect_url=redirect_url))

    # Verify token with Cloudflare
    data = {
        "secret": app.config["TURNSTILE_SECRET_KEY"],
        "response": token,
        "remoteip": request.remote_addr,
    }

    try:
        response = requests.post(app.config["TURNSTILE_VERIFY_URL"], data=data)
        result = response.json()

        if result.get("success"):
            # Set verification status in session
            session["turnstile_verified"] = True
            session["turnstile_verified_at"] = datetime.utcnow().timestamp()

            # Determine response type based on request
            is_xhr = request.headers.get("X-Requested-With") == "XMLHttpRequest"
            accepts_json = "application/json" in request.headers.get("Accept", "")

            # If AJAX or JSON request, return success JSON
            if is_xhr or accepts_json:
                return jsonify({"success": True, "redirect": redirect_url})

            # For regular form submissions, redirect to the target URL
            return redirect(redirect_url)
        else:
            # Verification failed
            app.logger.warning(f"Turnstile verification failed: {result}")

            # If AJAX request, return JSON error
            if request.headers.get("X-Requested-With") == "XMLHttpRequest":
                return jsonify({"success": False, "error": "Verification failed"}), 403

            # Otherwise redirect back to turnstile page
            return redirect(url_for("turnstile_page", redirect_url=redirect_url))

    except Exception as e:
        app.logger.error(f"Turnstile verification error: {str(e)}")

        # If AJAX request, return JSON error
        if request.headers.get("X-Requested-With") == "XMLHttpRequest":
            return (
                jsonify(
                    {"success": False, "error": "Server error during verification"}
                ),
                500,
            )

        # Otherwise redirect back to turnstile page
        return redirect(url_for("turnstile_page", redirect_url=redirect_url))

with open("sentences.txt", "r") as f, open("emotional_sentences.txt", "r") as f_emotional:
    # Store all sentences and clean them up
    all_harvard_sentences = [line.strip() for line in f.readlines() if line.strip()] + [line.strip() for line in f_emotional.readlines() if line.strip()]
    # Shuffle for initial random selection if needed, but main list remains ordered
    initial_sentences = random.sample(all_harvard_sentences, min(len(all_harvard_sentences), 500)) # Limit initial pass for template

@app.route("/")
def arena():
    # Pass a subset of sentences for the random button fallback
    return render_template("arena.html", harvard_sentences=json.dumps(initial_sentences))


@app.route("/leaderboard")
def leaderboard():
    tts_leaderboard = get_leaderboard_data(ModelType.TTS)
    conversational_leaderboard = get_leaderboard_data(ModelType.CONVERSATIONAL)
    top_voters = get_top_voters(10)  # Get top 10 voters

    # Initialize personal leaderboard data
    tts_personal_leaderboard = None
    conversational_personal_leaderboard = None
    user_leaderboard_visibility = None

    # If user is logged in, get their personal leaderboard and visibility setting
    if current_user.is_authenticated:
        tts_personal_leaderboard = get_user_leaderboard(current_user.id, ModelType.TTS)
        conversational_personal_leaderboard = get_user_leaderboard(
            current_user.id, ModelType.CONVERSATIONAL
        )
        user_leaderboard_visibility = current_user.show_in_leaderboard

    # Get key dates for the timeline
    tts_key_dates = get_key_historical_dates(ModelType.TTS)
    conversational_key_dates = get_key_historical_dates(ModelType.CONVERSATIONAL)

    # Format dates for display in the dropdown
    formatted_tts_dates = [date.strftime("%B %Y") for date in tts_key_dates]
    formatted_conversational_dates = [
        date.strftime("%B %Y") for date in conversational_key_dates
    ]

    return render_template(
        "leaderboard.html",
        tts_leaderboard=tts_leaderboard,
        conversational_leaderboard=conversational_leaderboard,
        tts_personal_leaderboard=tts_personal_leaderboard,
        conversational_personal_leaderboard=conversational_personal_leaderboard,
        tts_key_dates=tts_key_dates,
        conversational_key_dates=conversational_key_dates,
        formatted_tts_dates=formatted_tts_dates,
        formatted_conversational_dates=formatted_conversational_dates,
        top_voters=top_voters,
        user_leaderboard_visibility=user_leaderboard_visibility
    )


@app.route("/api/historical-leaderboard/<model_type>")
def historical_leaderboard(model_type):
    """Get historical leaderboard data for a specific date"""
    if model_type not in [ModelType.TTS, ModelType.CONVERSATIONAL]:
        return jsonify({"error": "Invalid model type"}), 400

    # Get date from query parameter
    date_str = request.args.get("date")
    if not date_str:
        return jsonify({"error": "Date parameter is required"}), 400

    try:
        # Parse date from URL parameter (format: YYYY-MM-DD)
        target_date = datetime.strptime(date_str, "%Y-%m-%d")

        # Get historical leaderboard data
        leaderboard_data = get_historical_leaderboard_data(model_type, target_date)

        return jsonify(
            {"date": target_date.strftime("%B %d, %Y"), "leaderboard": leaderboard_data}
        )
    except ValueError:
        return jsonify({"error": "Invalid date format. Use YYYY-MM-DD"}), 400


@app.route("/about")
def about():
    return render_template("about.html")


# --- TTS Caching Functions ---

def generate_and_save_tts(text, model_id, output_dir):
    """Generates TTS and saves it to a specific directory, returning the full path."""
    temp_audio_path = None # Initialize to None
    try:
        app.logger.debug(f"[TTS Gen {model_id}] Starting generation for: '{text[:30]}...'")
        # If predict_tts saves file itself and returns path:
        temp_audio_path = predict_tts(text, model_id)
        app.logger.debug(f"[TTS Gen {model_id}] predict_tts returned: {temp_audio_path}")

        if not temp_audio_path or not os.path.exists(temp_audio_path):
            app.logger.warning(f"[TTS Gen {model_id}] predict_tts failed or returned invalid path: {temp_audio_path}")
            raise ValueError("predict_tts did not return a valid path or file does not exist")

        file_uuid = str(uuid.uuid4())
        dest_path = os.path.join(output_dir, f"{file_uuid}.wav")
        app.logger.debug(f"[TTS Gen {model_id}] Moving {temp_audio_path} to {dest_path}")
        # Move the file generated by predict_tts to the target cache directory
        shutil.move(temp_audio_path, dest_path)
        app.logger.debug(f"[TTS Gen {model_id}] Move successful. Returning {dest_path}")
        return dest_path

    except Exception as e:
        app.logger.error(f"Error generating/saving TTS for model {model_id} and text '{text[:30]}...': {str(e)}")
        # Ensure temporary file from predict_tts (if any) is cleaned up
        if temp_audio_path and os.path.exists(temp_audio_path):
            try:
                app.logger.debug(f"[TTS Gen {model_id}] Cleaning up temporary file {temp_audio_path} after error.")
                os.remove(temp_audio_path)
            except OSError:
                pass # Ignore error if file couldn't be removed
        return None


def _generate_cache_entry_task(sentence):
    """Task function to generate audio for a sentence and add to cache."""
    # Wrap the entire task in an application context
    with app.app_context():
        if not sentence:
            # Select a new sentence if not provided (for replacement)
            with tts_cache_lock:
                cached_keys = set(tts_cache.keys())
            available_sentences = [s for s in all_harvard_sentences if s not in cached_keys]
            if not available_sentences:
                app.logger.warning("No more unique Harvard sentences available for caching.")
                return
            sentence = random.choice(available_sentences)

        # app.logger.info removed duplicate log
        print(f"[Cache Task] Querying models for: '{sentence[:50]}...'")
        available_models = Model.query.filter_by(
            model_type=ModelType.TTS, is_active=True
        ).all()

        if len(available_models) < 2:
            app.logger.error("Not enough active TTS models to generate cache entry.")
            return

        try:
            models = random.sample(available_models, 2)
            model_a_id = models[0].id
            model_b_id = models[1].id

            # Generate audio concurrently using a local executor for clarity within the task
            with ThreadPoolExecutor(max_workers=2, thread_name_prefix='AudioGen') as audio_executor:
                future_a = audio_executor.submit(generate_and_save_tts, sentence, model_a_id, CACHE_AUDIO_DIR)
                future_b = audio_executor.submit(generate_and_save_tts, sentence, model_b_id, CACHE_AUDIO_DIR)

                timeout_seconds = 120
                audio_a_path = future_a.result(timeout=timeout_seconds)
                audio_b_path = future_b.result(timeout=timeout_seconds)

            if audio_a_path and audio_b_path:
                with tts_cache_lock:
                    # Only add if the sentence isn't already back in the cache
                    # And ensure cache size doesn't exceed limit
                    if sentence not in tts_cache and len(tts_cache) < TTS_CACHE_SIZE:
                        tts_cache[sentence] = {
                            "model_a": model_a_id,
                            "model_b": model_b_id,
                            "audio_a": audio_a_path,
                            "audio_b": audio_b_path,
                            "created_at": datetime.utcnow(),
                        }
                        app.logger.info(f"Successfully cached entry for: '{sentence[:50]}...'")
                    elif sentence in tts_cache:
                         app.logger.warning(f"Sentence '{sentence[:50]}...' already re-cached. Discarding new generation.")
                         # Clean up the newly generated files if not added
                         if os.path.exists(audio_a_path): os.remove(audio_a_path)
                         if os.path.exists(audio_b_path): os.remove(audio_b_path)
                    else: # Cache is full
                        app.logger.warning(f"Cache is full ({len(tts_cache)} entries). Discarding new generation for '{sentence[:50]}...'.")
                        # Clean up the newly generated files if not added
                        if os.path.exists(audio_a_path): os.remove(audio_a_path)
                        if os.path.exists(audio_b_path): os.remove(audio_b_path)

            else:
                app.logger.error(f"Failed to generate one or both audio files for cache: '{sentence[:50]}...'")
                # Clean up whichever file might have been created
                if audio_a_path and os.path.exists(audio_a_path): os.remove(audio_a_path)
                if audio_b_path and os.path.exists(audio_b_path): os.remove(audio_b_path)

        except Exception as e:
            # Log the exception within the app context
            app.logger.error(f"Exception in _generate_cache_entry_task for '{sentence[:50]}...': {str(e)}", exc_info=True)


def initialize_tts_cache():
    print("Initializing TTS cache")
    """Selects initial sentences and starts generation tasks."""
    with app.app_context(): # Ensure access to models
        if not all_harvard_sentences:
            app.logger.error("Harvard sentences not loaded. Cannot initialize cache.")
            return

        initial_selection = random.sample(all_harvard_sentences, min(len(all_harvard_sentences), TTS_CACHE_SIZE))
        app.logger.info(f"Initializing TTS cache with {len(initial_selection)} sentences...")

        for sentence in initial_selection:
            # Use the main cache_executor for initial population too
            cache_executor.submit(_generate_cache_entry_task, sentence)
        app.logger.info("Submitted initial cache generation tasks.")

# --- End TTS Caching Functions ---


@app.route("/api/tts/generate", methods=["POST"])
@limiter.limit("10 per minute") # Keep limit, cached responses are still requests
def generate_tts():
    # If verification not setup, handle it first
    if app.config["TURNSTILE_ENABLED"] and not session.get("turnstile_verified"):
        return jsonify({"error": "Turnstile verification required"}), 403

    data = request.json
    text = data.get("text", "").strip() # Ensure text is stripped

    if not text or len(text) > 1000:
        return jsonify({"error": "Invalid or too long text"}), 400

    # --- Cache Check ---
    cache_hit = False
    session_data_from_cache = None
    with tts_cache_lock:
        if text in tts_cache:
            cache_hit = True
            cached_entry = tts_cache.pop(text) # Remove from cache immediately
            app.logger.info(f"TTS Cache HIT for: '{text[:50]}...'")

            # Prepare session data using cached info
            session_id = str(uuid.uuid4())
            session_data_from_cache = {
                "model_a": cached_entry["model_a"],
                "model_b": cached_entry["model_b"],
                "audio_a": cached_entry["audio_a"], # Paths are now from cache_dir
                "audio_b": cached_entry["audio_b"],
                "text": text,
                "created_at": datetime.utcnow(),
                "expires_at": datetime.utcnow() + timedelta(minutes=30),
                "voted": False,
            }
            app.tts_sessions[session_id] = session_data_from_cache

            # Trigger background task to replace the used cache entry
            cache_executor.submit(_generate_cache_entry_task, None) # Pass None to signal replacement

    if cache_hit and session_data_from_cache:
        # Return response using cached data
        # Note: The files are now managed by the session lifecycle (cleanup_session)
        return jsonify(
            {
                "session_id": session_id,
                "audio_a": f"/api/tts/audio/{session_id}/a",
                "audio_b": f"/api/tts/audio/{session_id}/b",
                "expires_in": 1800,  # 30 minutes in seconds
                "cache_hit": True,
            }
        )
    # --- End Cache Check ---

    # --- Cache Miss: Generate on the fly ---
    app.logger.info(f"TTS Cache MISS for: '{text[:50]}...'. Generating on the fly.")
    available_models = Model.query.filter_by(
        model_type=ModelType.TTS, is_active=True
    ).all()
    if len(available_models) < 2:
        return jsonify({"error": "Not enough TTS models available"}), 500

    selected_models = random.sample(available_models, 2)

    try:
        audio_files = []
        model_ids = []

        # Function to process a single model (generate directly to TEMP_AUDIO_DIR, not cache subdir)
        def process_model_on_the_fly(model):
             # Generate and save directly to the main temp dir
             # Assume predict_tts handles saving temporary files
             temp_audio_path = predict_tts(text, model.id)
             if not temp_audio_path or not os.path.exists(temp_audio_path):
                 raise ValueError(f"predict_tts failed for model {model.id}")

             # Create a unique name in the main TEMP_AUDIO_DIR for the session
             file_uuid = str(uuid.uuid4())
             dest_path = os.path.join(TEMP_AUDIO_DIR, f"{file_uuid}.wav")
             shutil.move(temp_audio_path, dest_path) # Move from predict_tts's temp location

             return {"model_id": model.id, "audio_path": dest_path}


        # Use ThreadPoolExecutor to process models concurrently
        with ThreadPoolExecutor(max_workers=2) as executor:
            results = list(executor.map(process_model_on_the_fly, selected_models))

        # Extract results
        for result in results:
            model_ids.append(result["model_id"])
            audio_files.append(result["audio_path"])

        # Create session
        session_id = str(uuid.uuid4())
        app.tts_sessions[session_id] = {
            "model_a": model_ids[0],
            "model_b": model_ids[1],
            "audio_a": audio_files[0], # Paths are now from TEMP_AUDIO_DIR directly
            "audio_b": audio_files[1],
            "text": text,
            "created_at": datetime.utcnow(),
            "expires_at": datetime.utcnow() + timedelta(minutes=30),
            "voted": False,
        }

        # Return audio file paths and session
        return jsonify(
            {
                "session_id": session_id,
                "audio_a": f"/api/tts/audio/{session_id}/a",
                "audio_b": f"/api/tts/audio/{session_id}/b",
                "expires_in": 1800,
                "cache_hit": False,
            }
        )

    except Exception as e:
        app.logger.error(f"TTS on-the-fly generation error: {str(e)}", exc_info=True)
        # Cleanup any files potentially created during the failed attempt
        if 'results' in locals():
             for res in results:
                 if 'audio_path' in res and os.path.exists(res['audio_path']):
                     try:
                         os.remove(res['audio_path'])
                     except OSError:
                         pass
        return jsonify({"error": "Failed to generate TTS"}), 500
    # --- End Cache Miss ---


@app.route("/api/tts/audio/<session_id>/<model_key>")
def get_audio(session_id, model_key):
    # If verification not setup, handle it first
    if app.config["TURNSTILE_ENABLED"] and not session.get("turnstile_verified"):
        return jsonify({"error": "Turnstile verification required"}), 403

    if session_id not in app.tts_sessions:
        return jsonify({"error": "Invalid or expired session"}), 404

    session_data = app.tts_sessions[session_id]

    # Check if session expired
    if datetime.utcnow() > session_data["expires_at"]:
        cleanup_session(session_id)
        return jsonify({"error": "Session expired"}), 410

    if model_key == "a":
        audio_path = session_data["audio_a"]
    elif model_key == "b":
        audio_path = session_data["audio_b"]
    else:
        return jsonify({"error": "Invalid model key"}), 400

    # Check if file exists
    if not os.path.exists(audio_path):
        return jsonify({"error": "Audio file not found"}), 404

    return send_file(audio_path, mimetype="audio/wav")


@app.route("/api/tts/vote", methods=["POST"])
@limiter.limit("30 per minute")
def submit_vote():
    # If verification not setup, handle it first
    if app.config["TURNSTILE_ENABLED"] and not session.get("turnstile_verified"):
        return jsonify({"error": "Turnstile verification required"}), 403

    data = request.json
    session_id = data.get("session_id")
    chosen_model_key = data.get("chosen_model")  # "a" or "b"

    if not session_id or session_id not in app.tts_sessions:
        return jsonify({"error": "Invalid or expired session"}), 404

    if not chosen_model_key or chosen_model_key not in ["a", "b"]:
        return jsonify({"error": "Invalid chosen model"}), 400

    session_data = app.tts_sessions[session_id]

    # Check if session expired
    if datetime.utcnow() > session_data["expires_at"]:
        cleanup_session(session_id)
        return jsonify({"error": "Session expired"}), 410

    # Check if already voted
    if session_data["voted"]:
        return jsonify({"error": "Vote already submitted for this session"}), 400

    # Get model IDs and audio paths
    chosen_id = (
        session_data["model_a"] if chosen_model_key == "a" else session_data["model_b"]
    )
    rejected_id = (
        session_data["model_b"] if chosen_model_key == "a" else session_data["model_a"]
    )
    chosen_audio_path = (
        session_data["audio_a"] if chosen_model_key == "a" else session_data["audio_b"]
    )
    rejected_audio_path = (
        session_data["audio_b"] if chosen_model_key == "a" else session_data["audio_a"]
    )

    # Record vote in database
    user_id = current_user.id if current_user.is_authenticated else None
    vote, error = record_vote(
        user_id, session_data["text"], chosen_id, rejected_id, ModelType.TTS
    )

    if error:
        return jsonify({"error": error}), 500

    # --- Save preference data ---
    try:
        vote_uuid = str(uuid.uuid4())
        vote_dir = os.path.join("./votes", vote_uuid)
        os.makedirs(vote_dir, exist_ok=True)

        # Copy audio files
        shutil.copy(chosen_audio_path, os.path.join(vote_dir, "chosen.wav"))
        shutil.copy(rejected_audio_path, os.path.join(vote_dir, "rejected.wav"))

        # Create metadata
        chosen_model_obj = Model.query.get(chosen_id)
        rejected_model_obj = Model.query.get(rejected_id)
        metadata = {
            "text": session_data["text"],
            "chosen_model": chosen_model_obj.name if chosen_model_obj else "Unknown",
            "chosen_model_id": chosen_model_obj.id if chosen_model_obj else "Unknown",
            "rejected_model": rejected_model_obj.name if rejected_model_obj else "Unknown",
            "rejected_model_id": rejected_model_obj.id if rejected_model_obj else "Unknown",
            "session_id": session_id,
            "timestamp": datetime.utcnow().isoformat(),
            "username": current_user.username if current_user.is_authenticated else None,
            "model_type": "TTS"
        }
        with open(os.path.join(vote_dir, "metadata.json"), "w") as f:
            json.dump(metadata, f, indent=2)

    except Exception as e:
        app.logger.error(f"Error saving preference data for vote {session_id}: {str(e)}")
        # Continue even if saving preference data fails, vote is already recorded

    # Mark session as voted
    session_data["voted"] = True

    # Return updated models (use previously fetched objects)
    return jsonify(
        {
            "success": True,
            "chosen_model": {"id": chosen_id, "name": chosen_model_obj.name if chosen_model_obj else "Unknown"},
            "rejected_model": {
                "id": rejected_id,
                "name": rejected_model_obj.name if rejected_model_obj else "Unknown",
            },
            "names": {
                "a": (
                    chosen_model_obj.name if chosen_model_key == "a" else rejected_model_obj.name
                    if chosen_model_obj and rejected_model_obj else "Unknown"
                ),
                "b": (
                    rejected_model_obj.name if chosen_model_key == "a" else chosen_model_obj.name
                    if chosen_model_obj and rejected_model_obj else "Unknown"
                ),
            },
        }
    )


def cleanup_session(session_id):
    """Remove session and its audio files"""
    if session_id in app.tts_sessions:
        session = app.tts_sessions[session_id]

        # Remove audio files
        for audio_file in [session["audio_a"], session["audio_b"]]:
            if os.path.exists(audio_file):
                try:
                    os.remove(audio_file)
                except Exception as e:
                    app.logger.error(f"Error removing audio file: {str(e)}")

        # Remove session
        del app.tts_sessions[session_id]


@app.route("/api/conversational/generate", methods=["POST"])
@limiter.limit("5 per minute")
def generate_podcast():
    # If verification not setup, handle it first
    if app.config["TURNSTILE_ENABLED"] and not session.get("turnstile_verified"):
        return jsonify({"error": "Turnstile verification required"}), 403

    data = request.json
    script = data.get("script")

    if not script or not isinstance(script, list) or len(script) < 2:
        return jsonify({"error": "Invalid script format or too short"}), 400

    # Validate script format
    for line in script:
        if not isinstance(line, dict) or "text" not in line or "speaker_id" not in line:
            return (
                jsonify(
                    {
                        "error": "Invalid script line format. Each line must have text and speaker_id"
                    }
                ),
                400,
            )
        if (
            not line["text"]
            or not isinstance(line["speaker_id"], int)
            or line["speaker_id"] not in [0, 1]
        ):
            return (
                jsonify({"error": "Invalid script content. Speaker ID must be 0 or 1"}),
                400,
            )

    # Get two conversational models (currently only CSM and PlayDialog)
    available_models = Model.query.filter_by(
        model_type=ModelType.CONVERSATIONAL, is_active=True
    ).all()

    if len(available_models) < 2:
        return jsonify({"error": "Not enough conversational models available"}), 500

    selected_models = random.sample(available_models, 2)

    try:
        # Generate audio for both models concurrently
        audio_files = []
        model_ids = []

        # Function to process a single model
        def process_model(model):
            # Call conversational TTS service
            audio_content = predict_tts(script, model.id)

            # Save to temp file with unique name
            file_uuid = str(uuid.uuid4())
            dest_path = os.path.join(TEMP_AUDIO_DIR, f"{file_uuid}.wav")

            with open(dest_path, "wb") as f:
                f.write(audio_content)

            return {"model_id": model.id, "audio_path": dest_path}

        # Use ThreadPoolExecutor to process models concurrently
        with ThreadPoolExecutor(max_workers=2) as executor:
            results = list(executor.map(process_model, selected_models))

        # Extract results
        for result in results:
            model_ids.append(result["model_id"])
            audio_files.append(result["audio_path"])

        # Create session
        session_id = str(uuid.uuid4())
        script_text = " ".join([line["text"] for line in script])
        app.conversational_sessions[session_id] = {
            "model_a": model_ids[0],
            "model_b": model_ids[1],
            "audio_a": audio_files[0],
            "audio_b": audio_files[1],
            "text": script_text[:1000],  # Limit text length
            "created_at": datetime.utcnow(),
            "expires_at": datetime.utcnow() + timedelta(minutes=30),
            "voted": False,
            "script": script,
        }

        # Return audio file paths and session
        return jsonify(
            {
                "session_id": session_id,
                "audio_a": f"/api/conversational/audio/{session_id}/a",
                "audio_b": f"/api/conversational/audio/{session_id}/b",
                "expires_in": 1800,  # 30 minutes in seconds
            }
        )

    except Exception as e:
        app.logger.error(f"Conversational generation error: {str(e)}")
        return jsonify({"error": f"Failed to generate podcast: {str(e)}"}), 500


@app.route("/api/conversational/audio/<session_id>/<model_key>")
def get_podcast_audio(session_id, model_key):
    # If verification not setup, handle it first
    if app.config["TURNSTILE_ENABLED"] and not session.get("turnstile_verified"):
        return jsonify({"error": "Turnstile verification required"}), 403

    if session_id not in app.conversational_sessions:
        return jsonify({"error": "Invalid or expired session"}), 404

    session_data = app.conversational_sessions[session_id]

    # Check if session expired
    if datetime.utcnow() > session_data["expires_at"]:
        cleanup_conversational_session(session_id)
        return jsonify({"error": "Session expired"}), 410

    if model_key == "a":
        audio_path = session_data["audio_a"]
    elif model_key == "b":
        audio_path = session_data["audio_b"]
    else:
        return jsonify({"error": "Invalid model key"}), 400

    # Check if file exists
    if not os.path.exists(audio_path):
        return jsonify({"error": "Audio file not found"}), 404

    return send_file(audio_path, mimetype="audio/wav")


@app.route("/api/conversational/vote", methods=["POST"])
@limiter.limit("30 per minute")
def submit_podcast_vote():
    # If verification not setup, handle it first
    if app.config["TURNSTILE_ENABLED"] and not session.get("turnstile_verified"):
        return jsonify({"error": "Turnstile verification required"}), 403

    data = request.json
    session_id = data.get("session_id")
    chosen_model_key = data.get("chosen_model")  # "a" or "b"

    if not session_id or session_id not in app.conversational_sessions:
        return jsonify({"error": "Invalid or expired session"}), 404

    if not chosen_model_key or chosen_model_key not in ["a", "b"]:
        return jsonify({"error": "Invalid chosen model"}), 400

    session_data = app.conversational_sessions[session_id]

    # Check if session expired
    if datetime.utcnow() > session_data["expires_at"]:
        cleanup_conversational_session(session_id)
        return jsonify({"error": "Session expired"}), 410

    # Check if already voted
    if session_data["voted"]:
        return jsonify({"error": "Vote already submitted for this session"}), 400

    # Get model IDs and audio paths
    chosen_id = (
        session_data["model_a"] if chosen_model_key == "a" else session_data["model_b"]
    )
    rejected_id = (
        session_data["model_b"] if chosen_model_key == "a" else session_data["model_a"]
    )
    chosen_audio_path = (
        session_data["audio_a"] if chosen_model_key == "a" else session_data["audio_b"]
    )
    rejected_audio_path = (
        session_data["audio_b"] if chosen_model_key == "a" else session_data["audio_a"]
    )

    # Record vote in database
    user_id = current_user.id if current_user.is_authenticated else None
    vote, error = record_vote(
        user_id, session_data["text"], chosen_id, rejected_id, ModelType.CONVERSATIONAL
    )

    if error:
        return jsonify({"error": error}), 500

    # --- Save preference data ---\
    try:
        vote_uuid = str(uuid.uuid4())
        vote_dir = os.path.join("./votes", vote_uuid)
        os.makedirs(vote_dir, exist_ok=True)

        # Copy audio files
        shutil.copy(chosen_audio_path, os.path.join(vote_dir, "chosen.wav"))
        shutil.copy(rejected_audio_path, os.path.join(vote_dir, "rejected.wav"))

        # Create metadata
        chosen_model_obj = Model.query.get(chosen_id)
        rejected_model_obj = Model.query.get(rejected_id)
        metadata = {
            "script": session_data["script"], # Save the full script
            "chosen_model": chosen_model_obj.name if chosen_model_obj else "Unknown",
            "chosen_model_id": chosen_model_obj.id if chosen_model_obj else "Unknown",
            "rejected_model": rejected_model_obj.name if rejected_model_obj else "Unknown",
            "rejected_model_id": rejected_model_obj.id if rejected_model_obj else "Unknown",
            "session_id": session_id,
            "timestamp": datetime.utcnow().isoformat(),
            "username": current_user.username if current_user.is_authenticated else None,
            "model_type": "CONVERSATIONAL"
        }
        with open(os.path.join(vote_dir, "metadata.json"), "w") as f:
            json.dump(metadata, f, indent=2)

    except Exception as e:
        app.logger.error(f"Error saving preference data for conversational vote {session_id}: {str(e)}")
        # Continue even if saving preference data fails, vote is already recorded

    # Mark session as voted
    session_data["voted"] = True

    # Return updated models (use previously fetched objects)
    return jsonify(
        {
            "success": True,
            "chosen_model": {"id": chosen_id, "name": chosen_model_obj.name if chosen_model_obj else "Unknown"},
            "rejected_model": {
                "id": rejected_id,
                "name": rejected_model_obj.name if rejected_model_obj else "Unknown",
            },
            "names": {
                "a": Model.query.get(session_data["model_a"]).name,
                "b": Model.query.get(session_data["model_b"]).name,
            },
        }
    )


def cleanup_conversational_session(session_id):
    """Remove conversational session and its audio files"""
    if session_id in app.conversational_sessions:
        session = app.conversational_sessions[session_id]

        # Remove audio files
        for audio_file in [session["audio_a"], session["audio_b"]]:
            if os.path.exists(audio_file):
                try:
                    os.remove(audio_file)
                except Exception as e:
                    app.logger.error(
                        f"Error removing conversational audio file: {str(e)}"
                    )

        # Remove session
        del app.conversational_sessions[session_id]


# Schedule periodic cleanup
def setup_cleanup():
    def cleanup_expired_sessions():
        with app.app_context(): # Ensure app context for logging
            current_time = datetime.utcnow()
            # Cleanup TTS sessions
            expired_tts_sessions = [
                sid
                for sid, session_data in app.tts_sessions.items()
                if current_time > session_data["expires_at"]
            ]
            for sid in expired_tts_sessions:
                cleanup_session(sid)

            # Cleanup conversational sessions
            expired_conv_sessions = [
                sid
                for sid, session_data in app.conversational_sessions.items()
                if current_time > session_data["expires_at"]
            ]
            for sid in expired_conv_sessions:
                cleanup_conversational_session(sid)
            app.logger.info(f"Cleaned up {len(expired_tts_sessions)} TTS and {len(expired_conv_sessions)} conversational sessions.")

    # Also cleanup potentially expired cache entries (e.g., > 1 hour old)
    # This prevents stale cache entries if generation is slow or failing
    # cleanup_stale_cache_entries()

    # Run cleanup every 15 minutes
    scheduler = BackgroundScheduler(daemon=True) # Run scheduler as daemon thread
    scheduler.add_job(cleanup_expired_sessions, "interval", minutes=15)
    scheduler.start()
    print("Cleanup scheduler started") # Use print for startup messages


# Schedule periodic tasks (database sync and preference upload)
def setup_periodic_tasks():
    """Setup periodic database synchronization and preference data upload for Spaces"""
    if not IS_SPACES:
        return

    db_path = app.config["SQLALCHEMY_DATABASE_URI"].replace("sqlite:///", "instance/") # Get relative path
    preferences_repo_id = "TTS-AGI/arena-v2-preferences"
    database_repo_id = "TTS-AGI/database-arena-v2"
    votes_dir = "./votes"

    def sync_database():
        """Uploads the database to HF dataset"""
        with app.app_context(): # Ensure app context for logging
            try:
                if not os.path.exists(db_path):
                    app.logger.warning(f"Database file not found at {db_path}, skipping sync.")
                    return

                api = HfApi(token=os.getenv("HF_TOKEN"))
                api.upload_file(
                    path_or_fileobj=db_path,
                    path_in_repo="tts_arena.db",
                    repo_id=database_repo_id,
                    repo_type="dataset",
                )
                app.logger.info(f"Database uploaded to {database_repo_id} at {datetime.utcnow()}")
            except Exception as e:
                app.logger.error(f"Error uploading database to {database_repo_id}: {str(e)}")

    def sync_preferences_data():
        """Zips and uploads preference data folders in batches to HF dataset"""
        with app.app_context(): # Ensure app context for logging
            if not os.path.isdir(votes_dir):
                return # Don't log every 5 mins if dir doesn't exist yet

            temp_batch_dir = None # Initialize to manage cleanup
            temp_individual_zip_dir = None # Initialize for individual zips
            local_batch_zip_path = None # Initialize for batch zip path

            try:
                api = HfApi(token=os.getenv("HF_TOKEN"))
                vote_uuids = [d for d in os.listdir(votes_dir) if os.path.isdir(os.path.join(votes_dir, d))]

                if not vote_uuids:
                    return # No data to process

                app.logger.info(f"Found {len(vote_uuids)} vote directories to process.")

                # Create temporary directories
                temp_batch_dir = tempfile.mkdtemp(prefix="hf_batch_")
                temp_individual_zip_dir = tempfile.mkdtemp(prefix="hf_indiv_zips_")
                app.logger.debug(f"Created temp directories: {temp_batch_dir}, {temp_individual_zip_dir}")

                processed_vote_dirs = []
                individual_zips_in_batch = []

                # 1. Create individual zips and move them to the batch directory
                for vote_uuid in vote_uuids:
                    dir_path = os.path.join(votes_dir, vote_uuid)
                    individual_zip_base_path = os.path.join(temp_individual_zip_dir, vote_uuid)
                    individual_zip_path = f"{individual_zip_base_path}.zip"

                    try:
                        shutil.make_archive(individual_zip_base_path, 'zip', dir_path)
                        app.logger.debug(f"Created individual zip: {individual_zip_path}")

                        # Move the created zip into the batch directory
                        final_individual_zip_path = os.path.join(temp_batch_dir, f"{vote_uuid}.zip")
                        shutil.move(individual_zip_path, final_individual_zip_path)
                        app.logger.debug(f"Moved individual zip to batch dir: {final_individual_zip_path}")

                        processed_vote_dirs.append(dir_path) # Mark original dir for later cleanup
                        individual_zips_in_batch.append(final_individual_zip_path)

                    except Exception as zip_err:
                        app.logger.error(f"Error creating or moving zip for {vote_uuid}: {str(zip_err)}")
                        # Clean up partial zip if it exists
                        if os.path.exists(individual_zip_path):
                            try:
                                os.remove(individual_zip_path)
                            except OSError:
                                pass
                        # Continue processing other votes

                # Clean up the temporary dir used for creating individual zips
                shutil.rmtree(temp_individual_zip_dir)
                temp_individual_zip_dir = None # Mark as cleaned
                app.logger.debug("Cleaned up temporary individual zip directory.")

                if not individual_zips_in_batch:
                    app.logger.warning("No individual zips were successfully created for batching.")
                    # Clean up batch dir if it's empty or only contains failed attempts
                    if temp_batch_dir and os.path.exists(temp_batch_dir):
                         shutil.rmtree(temp_batch_dir)
                         temp_batch_dir = None
                    return

                # 2. Create the batch zip file
                batch_timestamp = datetime.utcnow().strftime("%Y%m%d_%H%M%S")
                batch_uuid_short = str(uuid.uuid4())[:8]
                batch_zip_filename = f"{batch_timestamp}_batch_{batch_uuid_short}.zip"
                # Create batch zip in a standard temp location first
                local_batch_zip_base = os.path.join(tempfile.gettempdir(), batch_zip_filename.replace('.zip', ''))
                local_batch_zip_path = f"{local_batch_zip_base}.zip"

                app.logger.info(f"Creating batch zip: {local_batch_zip_path} with {len(individual_zips_in_batch)} individual zips.")
                shutil.make_archive(local_batch_zip_base, 'zip', temp_batch_dir)
                app.logger.info(f"Batch zip created successfully: {local_batch_zip_path}")

                # 3. Upload the batch zip file
                hf_repo_path = f"votes/{year}/{month}/{batch_zip_filename}"
                app.logger.info(f"Uploading batch zip to HF Hub: {preferences_repo_id}/{hf_repo_path}")

                api.upload_file(
                    path_or_fileobj=local_batch_zip_path,
                    path_in_repo=hf_repo_path,
                    repo_id=preferences_repo_id,
                    repo_type="dataset",
                    commit_message=f"Add batch preference data {batch_zip_filename} ({len(individual_zips_in_batch)} votes)"
                )
                app.logger.info(f"Successfully uploaded batch {batch_zip_filename} to {preferences_repo_id}")

                # 4. Cleanup after successful upload
                app.logger.info("Cleaning up local files after successful upload.")
                # Remove original vote directories that were successfully zipped and uploaded
                for dir_path in processed_vote_dirs:
                    try:
                        shutil.rmtree(dir_path)
                        app.logger.debug(f"Removed original vote directory: {dir_path}")
                    except OSError as e:
                        app.logger.error(f"Error removing processed vote directory {dir_path}: {str(e)}")

                # Remove the temporary batch directory (containing the individual zips)
                shutil.rmtree(temp_batch_dir)
                temp_batch_dir = None
                app.logger.debug("Removed temporary batch directory.")

                # Remove the local batch zip file
                os.remove(local_batch_zip_path)
                local_batch_zip_path = None
                app.logger.debug("Removed local batch zip file.")

                app.logger.info(f"Finished preference data sync. Uploaded batch {batch_zip_filename}.")

            except Exception as e:
                app.logger.error(f"Error during preference data batch sync: {str(e)}", exc_info=True)
                # If upload failed, the local batch zip might exist, clean it up.
                if local_batch_zip_path and os.path.exists(local_batch_zip_path):
                    try:
                        os.remove(local_batch_zip_path)
                        app.logger.debug("Cleaned up local batch zip after failed upload.")
                    except OSError as clean_err:
                        app.logger.error(f"Error cleaning up batch zip after failed upload: {clean_err}")
                # Do NOT remove temp_batch_dir if it exists; its contents will be retried next time.
                # Do NOT remove original vote directories if upload failed.

            finally:
                # Final cleanup for temporary directories in case of unexpected exits
                if temp_individual_zip_dir and os.path.exists(temp_individual_zip_dir):
                    try:
                        shutil.rmtree(temp_individual_zip_dir)
                    except Exception as final_clean_err:
                        app.logger.error(f"Error in final cleanup (indiv zips): {final_clean_err}")
                # Only clean up batch dir in finally block if it *wasn't* kept intentionally after upload failure
                if temp_batch_dir and os.path.exists(temp_batch_dir):
                     # Check if an upload attempt happened and failed
                     upload_failed = 'e' in locals() and isinstance(e, Exception) # Crude check if exception occurred
                     if not upload_failed: # If no upload error or upload succeeded, clean up
                        try:
                            shutil.rmtree(temp_batch_dir)
                        except Exception as final_clean_err:
                            app.logger.error(f"Error in final cleanup (batch dir): {final_clean_err}")
                     else:
                         app.logger.warning("Keeping temporary batch directory due to upload failure for next attempt.")


    # Schedule periodic tasks
    scheduler = BackgroundScheduler()
    # Sync database less frequently if needed, e.g., every 15 minutes
    scheduler.add_job(sync_database, "interval", minutes=15, id="sync_db_job")
    # Sync preferences more frequently
    scheduler.add_job(sync_preferences_data, "interval", minutes=5, id="sync_pref_job")
    scheduler.start()
    print("Periodic tasks scheduler started (DB sync and Preferences upload)") # Use print for startup


@app.cli.command("init-db")
def init_db():
    """Initialize the database."""
    with app.app_context():
        db.create_all()
        print("Database initialized!")


@app.route("/api/toggle-leaderboard-visibility", methods=["POST"])
def toggle_leaderboard_visibility():
    """Toggle whether the current user appears in the top voters leaderboard"""
    if not current_user.is_authenticated:
        return jsonify({"error": "You must be logged in to change this setting"}), 401
    
    new_status = toggle_user_leaderboard_visibility(current_user.id)
    if new_status is None:
        return jsonify({"error": "User not found"}), 404
        
    return jsonify({
        "success": True, 
        "visible": new_status,
        "message": "You are now visible in the voters leaderboard" if new_status else "You are now hidden from the voters leaderboard"
    })


@app.route("/api/tts/cached-sentences")
def get_cached_sentences():
    """Returns a list of sentences currently available in the TTS cache."""
    with tts_cache_lock:
        cached_keys = list(tts_cache.keys())
    return jsonify(cached_keys)


if __name__ == "__main__":
    with app.app_context():
        # Ensure ./instance and ./votes directories exist
        os.makedirs("instance", exist_ok=True)
        os.makedirs("./votes", exist_ok=True) # Create votes directory if it doesn't exist
        os.makedirs(CACHE_AUDIO_DIR, exist_ok=True) # Ensure cache audio dir exists

        # Clean up old cache audio files on startup
        try:
            app.logger.info(f"Clearing old cache audio files from {CACHE_AUDIO_DIR}")
            for filename in os.listdir(CACHE_AUDIO_DIR):
                file_path = os.path.join(CACHE_AUDIO_DIR, filename)
                try:
                    if os.path.isfile(file_path) or os.path.islink(file_path):
                        os.unlink(file_path)
                    elif os.path.isdir(file_path):
                        shutil.rmtree(file_path)
                except Exception as e:
                    app.logger.error(f'Failed to delete {file_path}. Reason: {e}')
        except Exception as e:
             app.logger.error(f"Error clearing cache directory {CACHE_AUDIO_DIR}: {e}")


        # Download database if it doesn't exist (only on initial space start)
        if IS_SPACES and not os.path.exists(app.config["SQLALCHEMY_DATABASE_URI"].replace("sqlite:///", "")):
             try:
                print("Database not found, downloading from HF dataset...")
                hf_hub_download(
                    repo_id="TTS-AGI/database-arena-v2",
                    filename="tts_arena.db",
                    repo_type="dataset",
                    local_dir="instance", # download to instance/
                    token=os.getenv("HF_TOKEN"),
                )
                print("Database downloaded successfully ✅")
             except Exception as e:
                 print(f"Error downloading database from HF dataset: {str(e)} ⚠️")


        db.create_all()  # Create tables if they don't exist
        insert_initial_models()
        # Setup background tasks
        initialize_tts_cache() # Start populating the cache
        setup_cleanup()
        setup_periodic_tasks() # Renamed function call

    # Configure Flask to recognize HTTPS when behind a reverse proxy
    from werkzeug.middleware.proxy_fix import ProxyFix

    # Apply ProxyFix middleware to handle reverse proxy headers
    # This ensures Flask generates correct URLs with https scheme
    # X-Forwarded-Proto header will be used to detect the original protocol
    app.wsgi_app = ProxyFix(app.wsgi_app, x_proto=1, x_host=1)

    # Force Flask to prefer HTTPS for generated URLs
    app.config["PREFERRED_URL_SCHEME"] = "https"

    from waitress import serve

    # Configuration for 2 vCPUs:
    # - threads: typically 4-8 threads per CPU core is a good balance
    # - connection_limit: maximum concurrent connections
    # - channel_timeout: prevent hanging connections
    threads = 12  # 6 threads per vCPU is a good balance for mixed IO/CPU workloads

    if IS_SPACES:
        serve(
            app,
            host="0.0.0.0",
            port=int(os.environ.get("PORT", 7860)),
            threads=threads,
            connection_limit=100,
            channel_timeout=30,
            url_scheme='https'
        )
    else:
        print(f"Starting Waitress server with {threads} threads")
        serve(
            app,
            host="0.0.0.0",
            port=5000,
            threads=threads,
            connection_limit=100,
            channel_timeout=30,
            url_scheme='https' # Keep https for local dev if using proxy/tunnel
        )