Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 57,643 Bytes
f1a0148 d462da9 f1a0148 e3a898b f1a0148 d462da9 f1a0148 d462da9 f1a0148 d462da9 f1a0148 3892fc6 d462da9 b8ff2a8 d462da9 b8ff2a8 f1a0148 d462da9 f1a0148 d462da9 f1a0148 d462da9 f1a0148 d462da9 f1a0148 d462da9 f1a0148 d462da9 f1a0148 d462da9 f1a0148 d462da9 f1a0148 d462da9 f1a0148 d462da9 f1a0148 d462da9 f1a0148 d462da9 f1a0148 d462da9 f1a0148 d462da9 f1a0148 807d96f f1a0148 807d96f f1a0148 807d96f f1a0148 807d96f f1a0148 807d96f f1a0148 807d96f f1a0148 807d96f f1a0148 5fed627 d462da9 d40e945 f1a0148 d462da9 f1a0148 d462da9 f1a0148 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 |
import os
from huggingface_hub import HfApi, hf_hub_download
from apscheduler.schedulers.background import BackgroundScheduler
from concurrent.futures import ThreadPoolExecutor
from datetime import datetime
import threading # Added for locking
year = datetime.now().year
month = datetime.now().month
# Check if running in a Huggin Face Space
IS_SPACES = False
if os.getenv("SPACE_REPO_NAME"):
print("Running in a Hugging Face Space 🤗")
IS_SPACES = True
# Setup database sync for HF Spaces
if not os.path.exists("instance/tts_arena.db"):
os.makedirs("instance", exist_ok=True)
try:
print("Database not found, downloading from HF dataset...")
hf_hub_download(
repo_id="TTS-AGI/database-arena-v2",
filename="tts_arena.db",
repo_type="dataset",
local_dir="instance",
token=os.getenv("HF_TOKEN"),
)
print("Database downloaded successfully ✅")
except Exception as e:
print(f"Error downloading database from HF dataset: {str(e)} ⚠️")
from flask import (
Flask,
render_template,
g,
request,
jsonify,
send_file,
redirect,
url_for,
session,
abort,
)
from flask_login import LoginManager, current_user
from models import *
from auth import auth, init_oauth, is_admin
from admin import admin
import os
from dotenv import load_dotenv
from flask_limiter import Limiter
from flask_limiter.util import get_remote_address
import uuid
import tempfile
import shutil
from tts import predict_tts
import random
import json
from datetime import datetime, timedelta
from flask_migrate import Migrate
import requests
import functools
import time # Added for potential retries
# Load environment variables
if not IS_SPACES:
load_dotenv() # Only load .env if not running in a Hugging Face Space
app = Flask(__name__)
app.config["SECRET_KEY"] = os.getenv("SECRET_KEY", os.urandom(24))
app.config["SQLALCHEMY_DATABASE_URI"] = os.getenv(
"DATABASE_URI", "sqlite:///tts_arena.db"
)
app.config["SQLALCHEMY_TRACK_MODIFICATIONS"] = False
app.config["SESSION_COOKIE_SECURE"] = True
app.config["SESSION_COOKIE_SAMESITE"] = (
"None" if IS_SPACES else "Lax"
) # HF Spaces uses iframes to load the app, so we need to set SAMESITE to None
app.config["PERMANENT_SESSION_LIFETIME"] = timedelta(days=30) # Set to desired duration
# Force HTTPS when running in HuggingFace Spaces
if IS_SPACES:
app.config["PREFERRED_URL_SCHEME"] = "https"
# Cloudflare Turnstile settings
app.config["TURNSTILE_ENABLED"] = (
os.getenv("TURNSTILE_ENABLED", "False").lower() == "true"
)
app.config["TURNSTILE_SITE_KEY"] = os.getenv("TURNSTILE_SITE_KEY", "")
app.config["TURNSTILE_SECRET_KEY"] = os.getenv("TURNSTILE_SECRET_KEY", "")
app.config["TURNSTILE_VERIFY_URL"] = (
"https://challenges.cloudflare.com/turnstile/v0/siteverify"
)
migrate = Migrate(app, db)
# Initialize extensions
db.init_app(app)
login_manager = LoginManager()
login_manager.init_app(app)
login_manager.login_view = "auth.login"
# Initialize OAuth
init_oauth(app)
# Configure rate limits
limiter = Limiter(
app=app,
key_func=get_remote_address,
default_limits=["2000 per day", "50 per minute"],
storage_uri="memory://",
)
# TTS Cache Configuration - Read from environment
TTS_CACHE_SIZE = int(os.getenv("TTS_CACHE_SIZE", "10"))
CACHE_AUDIO_SUBDIR = "cache"
tts_cache = {} # sentence -> {model_a, model_b, audio_a, audio_b, created_at}
tts_cache_lock = threading.Lock()
cache_executor = ThreadPoolExecutor(max_workers=2, thread_name_prefix='CacheReplacer')
all_harvard_sentences = [] # Keep the full list available
# Create temp directories
TEMP_AUDIO_DIR = os.path.join(tempfile.gettempdir(), "tts_arena_audio")
CACHE_AUDIO_DIR = os.path.join(TEMP_AUDIO_DIR, CACHE_AUDIO_SUBDIR)
os.makedirs(TEMP_AUDIO_DIR, exist_ok=True)
os.makedirs(CACHE_AUDIO_DIR, exist_ok=True) # Ensure cache subdir exists
# Store active TTS sessions
app.tts_sessions = {}
tts_sessions = app.tts_sessions
# Store active conversational sessions
app.conversational_sessions = {}
conversational_sessions = app.conversational_sessions
# Register blueprints
app.register_blueprint(auth, url_prefix="/auth")
app.register_blueprint(admin)
@login_manager.user_loader
def load_user(user_id):
return User.query.get(int(user_id))
@app.before_request
def before_request():
g.user = current_user
g.is_admin = is_admin(current_user)
# Ensure HTTPS for HuggingFace Spaces environment
if IS_SPACES and request.headers.get("X-Forwarded-Proto") == "http":
url = request.url.replace("http://", "https://", 1)
return redirect(url, code=301)
# Check if Turnstile verification is required
if app.config["TURNSTILE_ENABLED"]:
# Exclude verification routes
excluded_routes = ["verify_turnstile", "turnstile_page", "static"]
if request.endpoint not in excluded_routes:
# Check if user is verified
if not session.get("turnstile_verified"):
# Save original URL for redirect after verification
redirect_url = request.url
# Force HTTPS in HuggingFace Spaces
if IS_SPACES and redirect_url.startswith("http://"):
redirect_url = redirect_url.replace("http://", "https://", 1)
# If it's an API request, return a JSON response
if request.path.startswith("/api/"):
return jsonify({"error": "Turnstile verification required"}), 403
# For regular requests, redirect to verification page
return redirect(url_for("turnstile_page", redirect_url=redirect_url))
else:
# Check if verification has expired (default: 24 hours)
verification_timeout = (
int(os.getenv("TURNSTILE_TIMEOUT_HOURS", "24")) * 3600
) # Convert hours to seconds
verified_at = session.get("turnstile_verified_at", 0)
current_time = datetime.utcnow().timestamp()
if current_time - verified_at > verification_timeout:
# Verification expired, clear status and redirect to verification page
session.pop("turnstile_verified", None)
session.pop("turnstile_verified_at", None)
redirect_url = request.url
# Force HTTPS in HuggingFace Spaces
if IS_SPACES and redirect_url.startswith("http://"):
redirect_url = redirect_url.replace("http://", "https://", 1)
if request.path.startswith("/api/"):
return jsonify({"error": "Turnstile verification expired"}), 403
return redirect(
url_for("turnstile_page", redirect_url=redirect_url)
)
@app.route("/turnstile", methods=["GET"])
def turnstile_page():
"""Display Cloudflare Turnstile verification page"""
redirect_url = request.args.get("redirect_url", url_for("arena", _external=True))
# Force HTTPS in HuggingFace Spaces
if IS_SPACES and redirect_url.startswith("http://"):
redirect_url = redirect_url.replace("http://", "https://", 1)
return render_template(
"turnstile.html",
turnstile_site_key=app.config["TURNSTILE_SITE_KEY"],
redirect_url=redirect_url,
)
@app.route("/verify-turnstile", methods=["POST"])
def verify_turnstile():
"""Verify Cloudflare Turnstile token"""
token = request.form.get("cf-turnstile-response")
redirect_url = request.form.get("redirect_url", url_for("arena", _external=True))
# Force HTTPS in HuggingFace Spaces
if IS_SPACES and redirect_url.startswith("http://"):
redirect_url = redirect_url.replace("http://", "https://", 1)
if not token:
# If AJAX request, return JSON error
if request.headers.get("X-Requested-With") == "XMLHttpRequest":
return (
jsonify({"success": False, "error": "Missing verification token"}),
400,
)
# Otherwise redirect back to turnstile page
return redirect(url_for("turnstile_page", redirect_url=redirect_url))
# Verify token with Cloudflare
data = {
"secret": app.config["TURNSTILE_SECRET_KEY"],
"response": token,
"remoteip": request.remote_addr,
}
try:
response = requests.post(app.config["TURNSTILE_VERIFY_URL"], data=data)
result = response.json()
if result.get("success"):
# Set verification status in session
session["turnstile_verified"] = True
session["turnstile_verified_at"] = datetime.utcnow().timestamp()
# Determine response type based on request
is_xhr = request.headers.get("X-Requested-With") == "XMLHttpRequest"
accepts_json = "application/json" in request.headers.get("Accept", "")
# If AJAX or JSON request, return success JSON
if is_xhr or accepts_json:
return jsonify({"success": True, "redirect": redirect_url})
# For regular form submissions, redirect to the target URL
return redirect(redirect_url)
else:
# Verification failed
app.logger.warning(f"Turnstile verification failed: {result}")
# If AJAX request, return JSON error
if request.headers.get("X-Requested-With") == "XMLHttpRequest":
return jsonify({"success": False, "error": "Verification failed"}), 403
# Otherwise redirect back to turnstile page
return redirect(url_for("turnstile_page", redirect_url=redirect_url))
except Exception as e:
app.logger.error(f"Turnstile verification error: {str(e)}")
# If AJAX request, return JSON error
if request.headers.get("X-Requested-With") == "XMLHttpRequest":
return (
jsonify(
{"success": False, "error": "Server error during verification"}
),
500,
)
# Otherwise redirect back to turnstile page
return redirect(url_for("turnstile_page", redirect_url=redirect_url))
with open("sentences.txt", "r") as f, open("emotional_sentences.txt", "r") as f_emotional:
# Store all sentences and clean them up
all_harvard_sentences = [line.strip() for line in f.readlines() if line.strip()] + [line.strip() for line in f_emotional.readlines() if line.strip()]
# Shuffle for initial random selection if needed, but main list remains ordered
initial_sentences = random.sample(all_harvard_sentences, min(len(all_harvard_sentences), 500)) # Limit initial pass for template
@app.route("/")
def arena():
# Pass a subset of sentences for the random button fallback
return render_template("arena.html", harvard_sentences=json.dumps(initial_sentences))
@app.route("/leaderboard")
def leaderboard():
tts_leaderboard = get_leaderboard_data(ModelType.TTS)
conversational_leaderboard = get_leaderboard_data(ModelType.CONVERSATIONAL)
top_voters = get_top_voters(10) # Get top 10 voters
# Initialize personal leaderboard data
tts_personal_leaderboard = None
conversational_personal_leaderboard = None
user_leaderboard_visibility = None
# If user is logged in, get their personal leaderboard and visibility setting
if current_user.is_authenticated:
tts_personal_leaderboard = get_user_leaderboard(current_user.id, ModelType.TTS)
conversational_personal_leaderboard = get_user_leaderboard(
current_user.id, ModelType.CONVERSATIONAL
)
user_leaderboard_visibility = current_user.show_in_leaderboard
# Get key dates for the timeline
tts_key_dates = get_key_historical_dates(ModelType.TTS)
conversational_key_dates = get_key_historical_dates(ModelType.CONVERSATIONAL)
# Format dates for display in the dropdown
formatted_tts_dates = [date.strftime("%B %Y") for date in tts_key_dates]
formatted_conversational_dates = [
date.strftime("%B %Y") for date in conversational_key_dates
]
return render_template(
"leaderboard.html",
tts_leaderboard=tts_leaderboard,
conversational_leaderboard=conversational_leaderboard,
tts_personal_leaderboard=tts_personal_leaderboard,
conversational_personal_leaderboard=conversational_personal_leaderboard,
tts_key_dates=tts_key_dates,
conversational_key_dates=conversational_key_dates,
formatted_tts_dates=formatted_tts_dates,
formatted_conversational_dates=formatted_conversational_dates,
top_voters=top_voters,
user_leaderboard_visibility=user_leaderboard_visibility
)
@app.route("/api/historical-leaderboard/<model_type>")
def historical_leaderboard(model_type):
"""Get historical leaderboard data for a specific date"""
if model_type not in [ModelType.TTS, ModelType.CONVERSATIONAL]:
return jsonify({"error": "Invalid model type"}), 400
# Get date from query parameter
date_str = request.args.get("date")
if not date_str:
return jsonify({"error": "Date parameter is required"}), 400
try:
# Parse date from URL parameter (format: YYYY-MM-DD)
target_date = datetime.strptime(date_str, "%Y-%m-%d")
# Get historical leaderboard data
leaderboard_data = get_historical_leaderboard_data(model_type, target_date)
return jsonify(
{"date": target_date.strftime("%B %d, %Y"), "leaderboard": leaderboard_data}
)
except ValueError:
return jsonify({"error": "Invalid date format. Use YYYY-MM-DD"}), 400
@app.route("/about")
def about():
return render_template("about.html")
# --- TTS Caching Functions ---
def generate_and_save_tts(text, model_id, output_dir):
"""Generates TTS and saves it to a specific directory, returning the full path."""
temp_audio_path = None # Initialize to None
try:
app.logger.debug(f"[TTS Gen {model_id}] Starting generation for: '{text[:30]}...'")
# If predict_tts saves file itself and returns path:
temp_audio_path = predict_tts(text, model_id)
app.logger.debug(f"[TTS Gen {model_id}] predict_tts returned: {temp_audio_path}")
if not temp_audio_path or not os.path.exists(temp_audio_path):
app.logger.warning(f"[TTS Gen {model_id}] predict_tts failed or returned invalid path: {temp_audio_path}")
raise ValueError("predict_tts did not return a valid path or file does not exist")
file_uuid = str(uuid.uuid4())
dest_path = os.path.join(output_dir, f"{file_uuid}.wav")
app.logger.debug(f"[TTS Gen {model_id}] Moving {temp_audio_path} to {dest_path}")
# Move the file generated by predict_tts to the target cache directory
shutil.move(temp_audio_path, dest_path)
app.logger.debug(f"[TTS Gen {model_id}] Move successful. Returning {dest_path}")
return dest_path
except Exception as e:
app.logger.error(f"Error generating/saving TTS for model {model_id} and text '{text[:30]}...': {str(e)}")
# Ensure temporary file from predict_tts (if any) is cleaned up
if temp_audio_path and os.path.exists(temp_audio_path):
try:
app.logger.debug(f"[TTS Gen {model_id}] Cleaning up temporary file {temp_audio_path} after error.")
os.remove(temp_audio_path)
except OSError:
pass # Ignore error if file couldn't be removed
return None
def _generate_cache_entry_task(sentence):
"""Task function to generate audio for a sentence and add to cache."""
# Wrap the entire task in an application context
with app.app_context():
if not sentence:
# Select a new sentence if not provided (for replacement)
with tts_cache_lock:
cached_keys = set(tts_cache.keys())
available_sentences = [s for s in all_harvard_sentences if s not in cached_keys]
if not available_sentences:
app.logger.warning("No more unique Harvard sentences available for caching.")
return
sentence = random.choice(available_sentences)
# app.logger.info removed duplicate log
print(f"[Cache Task] Querying models for: '{sentence[:50]}...'")
available_models = Model.query.filter_by(
model_type=ModelType.TTS, is_active=True
).all()
if len(available_models) < 2:
app.logger.error("Not enough active TTS models to generate cache entry.")
return
try:
models = random.sample(available_models, 2)
model_a_id = models[0].id
model_b_id = models[1].id
# Generate audio concurrently using a local executor for clarity within the task
with ThreadPoolExecutor(max_workers=2, thread_name_prefix='AudioGen') as audio_executor:
future_a = audio_executor.submit(generate_and_save_tts, sentence, model_a_id, CACHE_AUDIO_DIR)
future_b = audio_executor.submit(generate_and_save_tts, sentence, model_b_id, CACHE_AUDIO_DIR)
timeout_seconds = 120
audio_a_path = future_a.result(timeout=timeout_seconds)
audio_b_path = future_b.result(timeout=timeout_seconds)
if audio_a_path and audio_b_path:
with tts_cache_lock:
# Only add if the sentence isn't already back in the cache
# And ensure cache size doesn't exceed limit
if sentence not in tts_cache and len(tts_cache) < TTS_CACHE_SIZE:
tts_cache[sentence] = {
"model_a": model_a_id,
"model_b": model_b_id,
"audio_a": audio_a_path,
"audio_b": audio_b_path,
"created_at": datetime.utcnow(),
}
app.logger.info(f"Successfully cached entry for: '{sentence[:50]}...'")
elif sentence in tts_cache:
app.logger.warning(f"Sentence '{sentence[:50]}...' already re-cached. Discarding new generation.")
# Clean up the newly generated files if not added
if os.path.exists(audio_a_path): os.remove(audio_a_path)
if os.path.exists(audio_b_path): os.remove(audio_b_path)
else: # Cache is full
app.logger.warning(f"Cache is full ({len(tts_cache)} entries). Discarding new generation for '{sentence[:50]}...'.")
# Clean up the newly generated files if not added
if os.path.exists(audio_a_path): os.remove(audio_a_path)
if os.path.exists(audio_b_path): os.remove(audio_b_path)
else:
app.logger.error(f"Failed to generate one or both audio files for cache: '{sentence[:50]}...'")
# Clean up whichever file might have been created
if audio_a_path and os.path.exists(audio_a_path): os.remove(audio_a_path)
if audio_b_path and os.path.exists(audio_b_path): os.remove(audio_b_path)
except Exception as e:
# Log the exception within the app context
app.logger.error(f"Exception in _generate_cache_entry_task for '{sentence[:50]}...': {str(e)}", exc_info=True)
def initialize_tts_cache():
print("Initializing TTS cache")
"""Selects initial sentences and starts generation tasks."""
with app.app_context(): # Ensure access to models
if not all_harvard_sentences:
app.logger.error("Harvard sentences not loaded. Cannot initialize cache.")
return
initial_selection = random.sample(all_harvard_sentences, min(len(all_harvard_sentences), TTS_CACHE_SIZE))
app.logger.info(f"Initializing TTS cache with {len(initial_selection)} sentences...")
for sentence in initial_selection:
# Use the main cache_executor for initial population too
cache_executor.submit(_generate_cache_entry_task, sentence)
app.logger.info("Submitted initial cache generation tasks.")
# --- End TTS Caching Functions ---
@app.route("/api/tts/generate", methods=["POST"])
@limiter.limit("10 per minute") # Keep limit, cached responses are still requests
def generate_tts():
# If verification not setup, handle it first
if app.config["TURNSTILE_ENABLED"] and not session.get("turnstile_verified"):
return jsonify({"error": "Turnstile verification required"}), 403
data = request.json
text = data.get("text", "").strip() # Ensure text is stripped
if not text or len(text) > 1000:
return jsonify({"error": "Invalid or too long text"}), 400
# --- Cache Check ---
cache_hit = False
session_data_from_cache = None
with tts_cache_lock:
if text in tts_cache:
cache_hit = True
cached_entry = tts_cache.pop(text) # Remove from cache immediately
app.logger.info(f"TTS Cache HIT for: '{text[:50]}...'")
# Prepare session data using cached info
session_id = str(uuid.uuid4())
session_data_from_cache = {
"model_a": cached_entry["model_a"],
"model_b": cached_entry["model_b"],
"audio_a": cached_entry["audio_a"], # Paths are now from cache_dir
"audio_b": cached_entry["audio_b"],
"text": text,
"created_at": datetime.utcnow(),
"expires_at": datetime.utcnow() + timedelta(minutes=30),
"voted": False,
}
app.tts_sessions[session_id] = session_data_from_cache
# Trigger background task to replace the used cache entry
cache_executor.submit(_generate_cache_entry_task, None) # Pass None to signal replacement
if cache_hit and session_data_from_cache:
# Return response using cached data
# Note: The files are now managed by the session lifecycle (cleanup_session)
return jsonify(
{
"session_id": session_id,
"audio_a": f"/api/tts/audio/{session_id}/a",
"audio_b": f"/api/tts/audio/{session_id}/b",
"expires_in": 1800, # 30 minutes in seconds
"cache_hit": True,
}
)
# --- End Cache Check ---
# --- Cache Miss: Generate on the fly ---
app.logger.info(f"TTS Cache MISS for: '{text[:50]}...'. Generating on the fly.")
available_models = Model.query.filter_by(
model_type=ModelType.TTS, is_active=True
).all()
if len(available_models) < 2:
return jsonify({"error": "Not enough TTS models available"}), 500
selected_models = random.sample(available_models, 2)
try:
audio_files = []
model_ids = []
# Function to process a single model (generate directly to TEMP_AUDIO_DIR, not cache subdir)
def process_model_on_the_fly(model):
# Generate and save directly to the main temp dir
# Assume predict_tts handles saving temporary files
temp_audio_path = predict_tts(text, model.id)
if not temp_audio_path or not os.path.exists(temp_audio_path):
raise ValueError(f"predict_tts failed for model {model.id}")
# Create a unique name in the main TEMP_AUDIO_DIR for the session
file_uuid = str(uuid.uuid4())
dest_path = os.path.join(TEMP_AUDIO_DIR, f"{file_uuid}.wav")
shutil.move(temp_audio_path, dest_path) # Move from predict_tts's temp location
return {"model_id": model.id, "audio_path": dest_path}
# Use ThreadPoolExecutor to process models concurrently
with ThreadPoolExecutor(max_workers=2) as executor:
results = list(executor.map(process_model_on_the_fly, selected_models))
# Extract results
for result in results:
model_ids.append(result["model_id"])
audio_files.append(result["audio_path"])
# Create session
session_id = str(uuid.uuid4())
app.tts_sessions[session_id] = {
"model_a": model_ids[0],
"model_b": model_ids[1],
"audio_a": audio_files[0], # Paths are now from TEMP_AUDIO_DIR directly
"audio_b": audio_files[1],
"text": text,
"created_at": datetime.utcnow(),
"expires_at": datetime.utcnow() + timedelta(minutes=30),
"voted": False,
}
# Return audio file paths and session
return jsonify(
{
"session_id": session_id,
"audio_a": f"/api/tts/audio/{session_id}/a",
"audio_b": f"/api/tts/audio/{session_id}/b",
"expires_in": 1800,
"cache_hit": False,
}
)
except Exception as e:
app.logger.error(f"TTS on-the-fly generation error: {str(e)}", exc_info=True)
# Cleanup any files potentially created during the failed attempt
if 'results' in locals():
for res in results:
if 'audio_path' in res and os.path.exists(res['audio_path']):
try:
os.remove(res['audio_path'])
except OSError:
pass
return jsonify({"error": "Failed to generate TTS"}), 500
# --- End Cache Miss ---
@app.route("/api/tts/audio/<session_id>/<model_key>")
def get_audio(session_id, model_key):
# If verification not setup, handle it first
if app.config["TURNSTILE_ENABLED"] and not session.get("turnstile_verified"):
return jsonify({"error": "Turnstile verification required"}), 403
if session_id not in app.tts_sessions:
return jsonify({"error": "Invalid or expired session"}), 404
session_data = app.tts_sessions[session_id]
# Check if session expired
if datetime.utcnow() > session_data["expires_at"]:
cleanup_session(session_id)
return jsonify({"error": "Session expired"}), 410
if model_key == "a":
audio_path = session_data["audio_a"]
elif model_key == "b":
audio_path = session_data["audio_b"]
else:
return jsonify({"error": "Invalid model key"}), 400
# Check if file exists
if not os.path.exists(audio_path):
return jsonify({"error": "Audio file not found"}), 404
return send_file(audio_path, mimetype="audio/wav")
@app.route("/api/tts/vote", methods=["POST"])
@limiter.limit("30 per minute")
def submit_vote():
# If verification not setup, handle it first
if app.config["TURNSTILE_ENABLED"] and not session.get("turnstile_verified"):
return jsonify({"error": "Turnstile verification required"}), 403
data = request.json
session_id = data.get("session_id")
chosen_model_key = data.get("chosen_model") # "a" or "b"
if not session_id or session_id not in app.tts_sessions:
return jsonify({"error": "Invalid or expired session"}), 404
if not chosen_model_key or chosen_model_key not in ["a", "b"]:
return jsonify({"error": "Invalid chosen model"}), 400
session_data = app.tts_sessions[session_id]
# Check if session expired
if datetime.utcnow() > session_data["expires_at"]:
cleanup_session(session_id)
return jsonify({"error": "Session expired"}), 410
# Check if already voted
if session_data["voted"]:
return jsonify({"error": "Vote already submitted for this session"}), 400
# Get model IDs and audio paths
chosen_id = (
session_data["model_a"] if chosen_model_key == "a" else session_data["model_b"]
)
rejected_id = (
session_data["model_b"] if chosen_model_key == "a" else session_data["model_a"]
)
chosen_audio_path = (
session_data["audio_a"] if chosen_model_key == "a" else session_data["audio_b"]
)
rejected_audio_path = (
session_data["audio_b"] if chosen_model_key == "a" else session_data["audio_a"]
)
# Record vote in database
user_id = current_user.id if current_user.is_authenticated else None
vote, error = record_vote(
user_id, session_data["text"], chosen_id, rejected_id, ModelType.TTS
)
if error:
return jsonify({"error": error}), 500
# --- Save preference data ---
try:
vote_uuid = str(uuid.uuid4())
vote_dir = os.path.join("./votes", vote_uuid)
os.makedirs(vote_dir, exist_ok=True)
# Copy audio files
shutil.copy(chosen_audio_path, os.path.join(vote_dir, "chosen.wav"))
shutil.copy(rejected_audio_path, os.path.join(vote_dir, "rejected.wav"))
# Create metadata
chosen_model_obj = Model.query.get(chosen_id)
rejected_model_obj = Model.query.get(rejected_id)
metadata = {
"text": session_data["text"],
"chosen_model": chosen_model_obj.name if chosen_model_obj else "Unknown",
"chosen_model_id": chosen_model_obj.id if chosen_model_obj else "Unknown",
"rejected_model": rejected_model_obj.name if rejected_model_obj else "Unknown",
"rejected_model_id": rejected_model_obj.id if rejected_model_obj else "Unknown",
"session_id": session_id,
"timestamp": datetime.utcnow().isoformat(),
"username": current_user.username if current_user.is_authenticated else None,
"model_type": "TTS"
}
with open(os.path.join(vote_dir, "metadata.json"), "w") as f:
json.dump(metadata, f, indent=2)
except Exception as e:
app.logger.error(f"Error saving preference data for vote {session_id}: {str(e)}")
# Continue even if saving preference data fails, vote is already recorded
# Mark session as voted
session_data["voted"] = True
# Return updated models (use previously fetched objects)
return jsonify(
{
"success": True,
"chosen_model": {"id": chosen_id, "name": chosen_model_obj.name if chosen_model_obj else "Unknown"},
"rejected_model": {
"id": rejected_id,
"name": rejected_model_obj.name if rejected_model_obj else "Unknown",
},
"names": {
"a": (
chosen_model_obj.name if chosen_model_key == "a" else rejected_model_obj.name
if chosen_model_obj and rejected_model_obj else "Unknown"
),
"b": (
rejected_model_obj.name if chosen_model_key == "a" else chosen_model_obj.name
if chosen_model_obj and rejected_model_obj else "Unknown"
),
},
}
)
def cleanup_session(session_id):
"""Remove session and its audio files"""
if session_id in app.tts_sessions:
session = app.tts_sessions[session_id]
# Remove audio files
for audio_file in [session["audio_a"], session["audio_b"]]:
if os.path.exists(audio_file):
try:
os.remove(audio_file)
except Exception as e:
app.logger.error(f"Error removing audio file: {str(e)}")
# Remove session
del app.tts_sessions[session_id]
@app.route("/api/conversational/generate", methods=["POST"])
@limiter.limit("5 per minute")
def generate_podcast():
# If verification not setup, handle it first
if app.config["TURNSTILE_ENABLED"] and not session.get("turnstile_verified"):
return jsonify({"error": "Turnstile verification required"}), 403
data = request.json
script = data.get("script")
if not script or not isinstance(script, list) or len(script) < 2:
return jsonify({"error": "Invalid script format or too short"}), 400
# Validate script format
for line in script:
if not isinstance(line, dict) or "text" not in line or "speaker_id" not in line:
return (
jsonify(
{
"error": "Invalid script line format. Each line must have text and speaker_id"
}
),
400,
)
if (
not line["text"]
or not isinstance(line["speaker_id"], int)
or line["speaker_id"] not in [0, 1]
):
return (
jsonify({"error": "Invalid script content. Speaker ID must be 0 or 1"}),
400,
)
# Get two conversational models (currently only CSM and PlayDialog)
available_models = Model.query.filter_by(
model_type=ModelType.CONVERSATIONAL, is_active=True
).all()
if len(available_models) < 2:
return jsonify({"error": "Not enough conversational models available"}), 500
selected_models = random.sample(available_models, 2)
try:
# Generate audio for both models concurrently
audio_files = []
model_ids = []
# Function to process a single model
def process_model(model):
# Call conversational TTS service
audio_content = predict_tts(script, model.id)
# Save to temp file with unique name
file_uuid = str(uuid.uuid4())
dest_path = os.path.join(TEMP_AUDIO_DIR, f"{file_uuid}.wav")
with open(dest_path, "wb") as f:
f.write(audio_content)
return {"model_id": model.id, "audio_path": dest_path}
# Use ThreadPoolExecutor to process models concurrently
with ThreadPoolExecutor(max_workers=2) as executor:
results = list(executor.map(process_model, selected_models))
# Extract results
for result in results:
model_ids.append(result["model_id"])
audio_files.append(result["audio_path"])
# Create session
session_id = str(uuid.uuid4())
script_text = " ".join([line["text"] for line in script])
app.conversational_sessions[session_id] = {
"model_a": model_ids[0],
"model_b": model_ids[1],
"audio_a": audio_files[0],
"audio_b": audio_files[1],
"text": script_text[:1000], # Limit text length
"created_at": datetime.utcnow(),
"expires_at": datetime.utcnow() + timedelta(minutes=30),
"voted": False,
"script": script,
}
# Return audio file paths and session
return jsonify(
{
"session_id": session_id,
"audio_a": f"/api/conversational/audio/{session_id}/a",
"audio_b": f"/api/conversational/audio/{session_id}/b",
"expires_in": 1800, # 30 minutes in seconds
}
)
except Exception as e:
app.logger.error(f"Conversational generation error: {str(e)}")
return jsonify({"error": f"Failed to generate podcast: {str(e)}"}), 500
@app.route("/api/conversational/audio/<session_id>/<model_key>")
def get_podcast_audio(session_id, model_key):
# If verification not setup, handle it first
if app.config["TURNSTILE_ENABLED"] and not session.get("turnstile_verified"):
return jsonify({"error": "Turnstile verification required"}), 403
if session_id not in app.conversational_sessions:
return jsonify({"error": "Invalid or expired session"}), 404
session_data = app.conversational_sessions[session_id]
# Check if session expired
if datetime.utcnow() > session_data["expires_at"]:
cleanup_conversational_session(session_id)
return jsonify({"error": "Session expired"}), 410
if model_key == "a":
audio_path = session_data["audio_a"]
elif model_key == "b":
audio_path = session_data["audio_b"]
else:
return jsonify({"error": "Invalid model key"}), 400
# Check if file exists
if not os.path.exists(audio_path):
return jsonify({"error": "Audio file not found"}), 404
return send_file(audio_path, mimetype="audio/wav")
@app.route("/api/conversational/vote", methods=["POST"])
@limiter.limit("30 per minute")
def submit_podcast_vote():
# If verification not setup, handle it first
if app.config["TURNSTILE_ENABLED"] and not session.get("turnstile_verified"):
return jsonify({"error": "Turnstile verification required"}), 403
data = request.json
session_id = data.get("session_id")
chosen_model_key = data.get("chosen_model") # "a" or "b"
if not session_id or session_id not in app.conversational_sessions:
return jsonify({"error": "Invalid or expired session"}), 404
if not chosen_model_key or chosen_model_key not in ["a", "b"]:
return jsonify({"error": "Invalid chosen model"}), 400
session_data = app.conversational_sessions[session_id]
# Check if session expired
if datetime.utcnow() > session_data["expires_at"]:
cleanup_conversational_session(session_id)
return jsonify({"error": "Session expired"}), 410
# Check if already voted
if session_data["voted"]:
return jsonify({"error": "Vote already submitted for this session"}), 400
# Get model IDs and audio paths
chosen_id = (
session_data["model_a"] if chosen_model_key == "a" else session_data["model_b"]
)
rejected_id = (
session_data["model_b"] if chosen_model_key == "a" else session_data["model_a"]
)
chosen_audio_path = (
session_data["audio_a"] if chosen_model_key == "a" else session_data["audio_b"]
)
rejected_audio_path = (
session_data["audio_b"] if chosen_model_key == "a" else session_data["audio_a"]
)
# Record vote in database
user_id = current_user.id if current_user.is_authenticated else None
vote, error = record_vote(
user_id, session_data["text"], chosen_id, rejected_id, ModelType.CONVERSATIONAL
)
if error:
return jsonify({"error": error}), 500
# --- Save preference data ---\
try:
vote_uuid = str(uuid.uuid4())
vote_dir = os.path.join("./votes", vote_uuid)
os.makedirs(vote_dir, exist_ok=True)
# Copy audio files
shutil.copy(chosen_audio_path, os.path.join(vote_dir, "chosen.wav"))
shutil.copy(rejected_audio_path, os.path.join(vote_dir, "rejected.wav"))
# Create metadata
chosen_model_obj = Model.query.get(chosen_id)
rejected_model_obj = Model.query.get(rejected_id)
metadata = {
"script": session_data["script"], # Save the full script
"chosen_model": chosen_model_obj.name if chosen_model_obj else "Unknown",
"chosen_model_id": chosen_model_obj.id if chosen_model_obj else "Unknown",
"rejected_model": rejected_model_obj.name if rejected_model_obj else "Unknown",
"rejected_model_id": rejected_model_obj.id if rejected_model_obj else "Unknown",
"session_id": session_id,
"timestamp": datetime.utcnow().isoformat(),
"username": current_user.username if current_user.is_authenticated else None,
"model_type": "CONVERSATIONAL"
}
with open(os.path.join(vote_dir, "metadata.json"), "w") as f:
json.dump(metadata, f, indent=2)
except Exception as e:
app.logger.error(f"Error saving preference data for conversational vote {session_id}: {str(e)}")
# Continue even if saving preference data fails, vote is already recorded
# Mark session as voted
session_data["voted"] = True
# Return updated models (use previously fetched objects)
return jsonify(
{
"success": True,
"chosen_model": {"id": chosen_id, "name": chosen_model_obj.name if chosen_model_obj else "Unknown"},
"rejected_model": {
"id": rejected_id,
"name": rejected_model_obj.name if rejected_model_obj else "Unknown",
},
"names": {
"a": Model.query.get(session_data["model_a"]).name,
"b": Model.query.get(session_data["model_b"]).name,
},
}
)
def cleanup_conversational_session(session_id):
"""Remove conversational session and its audio files"""
if session_id in app.conversational_sessions:
session = app.conversational_sessions[session_id]
# Remove audio files
for audio_file in [session["audio_a"], session["audio_b"]]:
if os.path.exists(audio_file):
try:
os.remove(audio_file)
except Exception as e:
app.logger.error(
f"Error removing conversational audio file: {str(e)}"
)
# Remove session
del app.conversational_sessions[session_id]
# Schedule periodic cleanup
def setup_cleanup():
def cleanup_expired_sessions():
with app.app_context(): # Ensure app context for logging
current_time = datetime.utcnow()
# Cleanup TTS sessions
expired_tts_sessions = [
sid
for sid, session_data in app.tts_sessions.items()
if current_time > session_data["expires_at"]
]
for sid in expired_tts_sessions:
cleanup_session(sid)
# Cleanup conversational sessions
expired_conv_sessions = [
sid
for sid, session_data in app.conversational_sessions.items()
if current_time > session_data["expires_at"]
]
for sid in expired_conv_sessions:
cleanup_conversational_session(sid)
app.logger.info(f"Cleaned up {len(expired_tts_sessions)} TTS and {len(expired_conv_sessions)} conversational sessions.")
# Also cleanup potentially expired cache entries (e.g., > 1 hour old)
# This prevents stale cache entries if generation is slow or failing
# cleanup_stale_cache_entries()
# Run cleanup every 15 minutes
scheduler = BackgroundScheduler(daemon=True) # Run scheduler as daemon thread
scheduler.add_job(cleanup_expired_sessions, "interval", minutes=15)
scheduler.start()
print("Cleanup scheduler started") # Use print for startup messages
# Schedule periodic tasks (database sync and preference upload)
def setup_periodic_tasks():
"""Setup periodic database synchronization and preference data upload for Spaces"""
if not IS_SPACES:
return
db_path = app.config["SQLALCHEMY_DATABASE_URI"].replace("sqlite:///", "instance/") # Get relative path
preferences_repo_id = "TTS-AGI/arena-v2-preferences"
database_repo_id = "TTS-AGI/database-arena-v2"
votes_dir = "./votes"
def sync_database():
"""Uploads the database to HF dataset"""
with app.app_context(): # Ensure app context for logging
try:
if not os.path.exists(db_path):
app.logger.warning(f"Database file not found at {db_path}, skipping sync.")
return
api = HfApi(token=os.getenv("HF_TOKEN"))
api.upload_file(
path_or_fileobj=db_path,
path_in_repo="tts_arena.db",
repo_id=database_repo_id,
repo_type="dataset",
)
app.logger.info(f"Database uploaded to {database_repo_id} at {datetime.utcnow()}")
except Exception as e:
app.logger.error(f"Error uploading database to {database_repo_id}: {str(e)}")
def sync_preferences_data():
"""Zips and uploads preference data folders in batches to HF dataset"""
with app.app_context(): # Ensure app context for logging
if not os.path.isdir(votes_dir):
return # Don't log every 5 mins if dir doesn't exist yet
temp_batch_dir = None # Initialize to manage cleanup
temp_individual_zip_dir = None # Initialize for individual zips
local_batch_zip_path = None # Initialize for batch zip path
try:
api = HfApi(token=os.getenv("HF_TOKEN"))
vote_uuids = [d for d in os.listdir(votes_dir) if os.path.isdir(os.path.join(votes_dir, d))]
if not vote_uuids:
return # No data to process
app.logger.info(f"Found {len(vote_uuids)} vote directories to process.")
# Create temporary directories
temp_batch_dir = tempfile.mkdtemp(prefix="hf_batch_")
temp_individual_zip_dir = tempfile.mkdtemp(prefix="hf_indiv_zips_")
app.logger.debug(f"Created temp directories: {temp_batch_dir}, {temp_individual_zip_dir}")
processed_vote_dirs = []
individual_zips_in_batch = []
# 1. Create individual zips and move them to the batch directory
for vote_uuid in vote_uuids:
dir_path = os.path.join(votes_dir, vote_uuid)
individual_zip_base_path = os.path.join(temp_individual_zip_dir, vote_uuid)
individual_zip_path = f"{individual_zip_base_path}.zip"
try:
shutil.make_archive(individual_zip_base_path, 'zip', dir_path)
app.logger.debug(f"Created individual zip: {individual_zip_path}")
# Move the created zip into the batch directory
final_individual_zip_path = os.path.join(temp_batch_dir, f"{vote_uuid}.zip")
shutil.move(individual_zip_path, final_individual_zip_path)
app.logger.debug(f"Moved individual zip to batch dir: {final_individual_zip_path}")
processed_vote_dirs.append(dir_path) # Mark original dir for later cleanup
individual_zips_in_batch.append(final_individual_zip_path)
except Exception as zip_err:
app.logger.error(f"Error creating or moving zip for {vote_uuid}: {str(zip_err)}")
# Clean up partial zip if it exists
if os.path.exists(individual_zip_path):
try:
os.remove(individual_zip_path)
except OSError:
pass
# Continue processing other votes
# Clean up the temporary dir used for creating individual zips
shutil.rmtree(temp_individual_zip_dir)
temp_individual_zip_dir = None # Mark as cleaned
app.logger.debug("Cleaned up temporary individual zip directory.")
if not individual_zips_in_batch:
app.logger.warning("No individual zips were successfully created for batching.")
# Clean up batch dir if it's empty or only contains failed attempts
if temp_batch_dir and os.path.exists(temp_batch_dir):
shutil.rmtree(temp_batch_dir)
temp_batch_dir = None
return
# 2. Create the batch zip file
batch_timestamp = datetime.utcnow().strftime("%Y%m%d_%H%M%S")
batch_uuid_short = str(uuid.uuid4())[:8]
batch_zip_filename = f"{batch_timestamp}_batch_{batch_uuid_short}.zip"
# Create batch zip in a standard temp location first
local_batch_zip_base = os.path.join(tempfile.gettempdir(), batch_zip_filename.replace('.zip', ''))
local_batch_zip_path = f"{local_batch_zip_base}.zip"
app.logger.info(f"Creating batch zip: {local_batch_zip_path} with {len(individual_zips_in_batch)} individual zips.")
shutil.make_archive(local_batch_zip_base, 'zip', temp_batch_dir)
app.logger.info(f"Batch zip created successfully: {local_batch_zip_path}")
# 3. Upload the batch zip file
hf_repo_path = f"votes/{year}/{month}/{batch_zip_filename}"
app.logger.info(f"Uploading batch zip to HF Hub: {preferences_repo_id}/{hf_repo_path}")
api.upload_file(
path_or_fileobj=local_batch_zip_path,
path_in_repo=hf_repo_path,
repo_id=preferences_repo_id,
repo_type="dataset",
commit_message=f"Add batch preference data {batch_zip_filename} ({len(individual_zips_in_batch)} votes)"
)
app.logger.info(f"Successfully uploaded batch {batch_zip_filename} to {preferences_repo_id}")
# 4. Cleanup after successful upload
app.logger.info("Cleaning up local files after successful upload.")
# Remove original vote directories that were successfully zipped and uploaded
for dir_path in processed_vote_dirs:
try:
shutil.rmtree(dir_path)
app.logger.debug(f"Removed original vote directory: {dir_path}")
except OSError as e:
app.logger.error(f"Error removing processed vote directory {dir_path}: {str(e)}")
# Remove the temporary batch directory (containing the individual zips)
shutil.rmtree(temp_batch_dir)
temp_batch_dir = None
app.logger.debug("Removed temporary batch directory.")
# Remove the local batch zip file
os.remove(local_batch_zip_path)
local_batch_zip_path = None
app.logger.debug("Removed local batch zip file.")
app.logger.info(f"Finished preference data sync. Uploaded batch {batch_zip_filename}.")
except Exception as e:
app.logger.error(f"Error during preference data batch sync: {str(e)}", exc_info=True)
# If upload failed, the local batch zip might exist, clean it up.
if local_batch_zip_path and os.path.exists(local_batch_zip_path):
try:
os.remove(local_batch_zip_path)
app.logger.debug("Cleaned up local batch zip after failed upload.")
except OSError as clean_err:
app.logger.error(f"Error cleaning up batch zip after failed upload: {clean_err}")
# Do NOT remove temp_batch_dir if it exists; its contents will be retried next time.
# Do NOT remove original vote directories if upload failed.
finally:
# Final cleanup for temporary directories in case of unexpected exits
if temp_individual_zip_dir and os.path.exists(temp_individual_zip_dir):
try:
shutil.rmtree(temp_individual_zip_dir)
except Exception as final_clean_err:
app.logger.error(f"Error in final cleanup (indiv zips): {final_clean_err}")
# Only clean up batch dir in finally block if it *wasn't* kept intentionally after upload failure
if temp_batch_dir and os.path.exists(temp_batch_dir):
# Check if an upload attempt happened and failed
upload_failed = 'e' in locals() and isinstance(e, Exception) # Crude check if exception occurred
if not upload_failed: # If no upload error or upload succeeded, clean up
try:
shutil.rmtree(temp_batch_dir)
except Exception as final_clean_err:
app.logger.error(f"Error in final cleanup (batch dir): {final_clean_err}")
else:
app.logger.warning("Keeping temporary batch directory due to upload failure for next attempt.")
# Schedule periodic tasks
scheduler = BackgroundScheduler()
# Sync database less frequently if needed, e.g., every 15 minutes
scheduler.add_job(sync_database, "interval", minutes=15, id="sync_db_job")
# Sync preferences more frequently
scheduler.add_job(sync_preferences_data, "interval", minutes=5, id="sync_pref_job")
scheduler.start()
print("Periodic tasks scheduler started (DB sync and Preferences upload)") # Use print for startup
@app.cli.command("init-db")
def init_db():
"""Initialize the database."""
with app.app_context():
db.create_all()
print("Database initialized!")
@app.route("/api/toggle-leaderboard-visibility", methods=["POST"])
def toggle_leaderboard_visibility():
"""Toggle whether the current user appears in the top voters leaderboard"""
if not current_user.is_authenticated:
return jsonify({"error": "You must be logged in to change this setting"}), 401
new_status = toggle_user_leaderboard_visibility(current_user.id)
if new_status is None:
return jsonify({"error": "User not found"}), 404
return jsonify({
"success": True,
"visible": new_status,
"message": "You are now visible in the voters leaderboard" if new_status else "You are now hidden from the voters leaderboard"
})
@app.route("/api/tts/cached-sentences")
def get_cached_sentences():
"""Returns a list of sentences currently available in the TTS cache."""
with tts_cache_lock:
cached_keys = list(tts_cache.keys())
return jsonify(cached_keys)
if __name__ == "__main__":
with app.app_context():
# Ensure ./instance and ./votes directories exist
os.makedirs("instance", exist_ok=True)
os.makedirs("./votes", exist_ok=True) # Create votes directory if it doesn't exist
os.makedirs(CACHE_AUDIO_DIR, exist_ok=True) # Ensure cache audio dir exists
# Clean up old cache audio files on startup
try:
app.logger.info(f"Clearing old cache audio files from {CACHE_AUDIO_DIR}")
for filename in os.listdir(CACHE_AUDIO_DIR):
file_path = os.path.join(CACHE_AUDIO_DIR, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path)
elif os.path.isdir(file_path):
shutil.rmtree(file_path)
except Exception as e:
app.logger.error(f'Failed to delete {file_path}. Reason: {e}')
except Exception as e:
app.logger.error(f"Error clearing cache directory {CACHE_AUDIO_DIR}: {e}")
# Download database if it doesn't exist (only on initial space start)
if IS_SPACES and not os.path.exists(app.config["SQLALCHEMY_DATABASE_URI"].replace("sqlite:///", "")):
try:
print("Database not found, downloading from HF dataset...")
hf_hub_download(
repo_id="TTS-AGI/database-arena-v2",
filename="tts_arena.db",
repo_type="dataset",
local_dir="instance", # download to instance/
token=os.getenv("HF_TOKEN"),
)
print("Database downloaded successfully ✅")
except Exception as e:
print(f"Error downloading database from HF dataset: {str(e)} ⚠️")
db.create_all() # Create tables if they don't exist
insert_initial_models()
# Setup background tasks
initialize_tts_cache() # Start populating the cache
setup_cleanup()
setup_periodic_tasks() # Renamed function call
# Configure Flask to recognize HTTPS when behind a reverse proxy
from werkzeug.middleware.proxy_fix import ProxyFix
# Apply ProxyFix middleware to handle reverse proxy headers
# This ensures Flask generates correct URLs with https scheme
# X-Forwarded-Proto header will be used to detect the original protocol
app.wsgi_app = ProxyFix(app.wsgi_app, x_proto=1, x_host=1)
# Force Flask to prefer HTTPS for generated URLs
app.config["PREFERRED_URL_SCHEME"] = "https"
from waitress import serve
# Configuration for 2 vCPUs:
# - threads: typically 4-8 threads per CPU core is a good balance
# - connection_limit: maximum concurrent connections
# - channel_timeout: prevent hanging connections
threads = 12 # 6 threads per vCPU is a good balance for mixed IO/CPU workloads
if IS_SPACES:
serve(
app,
host="0.0.0.0",
port=int(os.environ.get("PORT", 7860)),
threads=threads,
connection_limit=100,
channel_timeout=30,
url_scheme='https'
)
else:
print(f"Starting Waitress server with {threads} threads")
serve(
app,
host="0.0.0.0",
port=5000,
threads=threads,
connection_limit=100,
channel_timeout=30,
url_scheme='https' # Keep https for local dev if using proxy/tunnel
)
|