Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
GitHub Actions
commited on
Commit
·
27c8444
1
Parent(s):
b97094d
Sync from GitHub repo
Browse files- app.py +1673 -26
- migrate.py +58 -4
- migrate_consumed_sentences.py +52 -0
- models.py +127 -13
- requirements.txt +2 -1
- templates/arena.html +6 -11
- tts.py +0 -2
app.py
CHANGED
|
@@ -1,33 +1,1680 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
app = Flask(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
@app.route("/")
|
| 29 |
-
def
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
if __name__ == "__main__":
|
| 33 |
-
app.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from huggingface_hub import HfApi, hf_hub_download
|
| 3 |
+
from apscheduler.schedulers.background import BackgroundScheduler
|
| 4 |
+
from concurrent.futures import ThreadPoolExecutor
|
| 5 |
+
from datetime import datetime
|
| 6 |
+
import threading # Added for locking
|
| 7 |
+
from sqlalchemy import or_ # Added for vote counting query
|
| 8 |
+
from datasets import load_dataset
|
| 9 |
+
|
| 10 |
+
year = datetime.now().year
|
| 11 |
+
month = datetime.now().month
|
| 12 |
+
|
| 13 |
+
# Check if running in a Huggin Face Space
|
| 14 |
+
IS_SPACES = False
|
| 15 |
+
if os.getenv("SPACE_REPO_NAME"):
|
| 16 |
+
print("Running in a Hugging Face Space 🤗")
|
| 17 |
+
IS_SPACES = True
|
| 18 |
+
|
| 19 |
+
# Setup database sync for HF Spaces
|
| 20 |
+
if not os.path.exists("instance/tts_arena.db"):
|
| 21 |
+
os.makedirs("instance", exist_ok=True)
|
| 22 |
+
try:
|
| 23 |
+
print("Database not found, downloading from HF dataset...")
|
| 24 |
+
hf_hub_download(
|
| 25 |
+
repo_id="TTS-AGI/database-arena-v2",
|
| 26 |
+
filename="tts_arena.db",
|
| 27 |
+
repo_type="dataset",
|
| 28 |
+
local_dir="instance",
|
| 29 |
+
token=os.getenv("HF_TOKEN"),
|
| 30 |
+
)
|
| 31 |
+
print("Database downloaded successfully ✅")
|
| 32 |
+
except Exception as e:
|
| 33 |
+
print(f"Error downloading database from HF dataset: {str(e)} ⚠️")
|
| 34 |
+
|
| 35 |
+
from flask import (
|
| 36 |
+
Flask,
|
| 37 |
+
render_template,
|
| 38 |
+
g,
|
| 39 |
+
request,
|
| 40 |
+
jsonify,
|
| 41 |
+
send_file,
|
| 42 |
+
redirect,
|
| 43 |
+
url_for,
|
| 44 |
+
session,
|
| 45 |
+
abort,
|
| 46 |
+
)
|
| 47 |
+
from flask_login import LoginManager, current_user
|
| 48 |
+
from models import *
|
| 49 |
+
from models import (
|
| 50 |
+
hash_sentence, is_sentence_consumed, mark_sentence_consumed,
|
| 51 |
+
get_unconsumed_sentences, get_consumed_sentences_count, get_random_unconsumed_sentence
|
| 52 |
+
)
|
| 53 |
+
from auth import auth, init_oauth, is_admin
|
| 54 |
+
from admin import admin
|
| 55 |
+
from security import is_vote_allowed, check_user_security_score, detect_coordinated_voting
|
| 56 |
+
import os
|
| 57 |
+
from dotenv import load_dotenv
|
| 58 |
+
from flask_limiter import Limiter
|
| 59 |
+
from flask_limiter.util import get_remote_address
|
| 60 |
+
import uuid
|
| 61 |
+
import tempfile
|
| 62 |
+
import shutil
|
| 63 |
+
from tts import predict_tts
|
| 64 |
+
import random
|
| 65 |
+
import json
|
| 66 |
+
from datetime import datetime, timedelta
|
| 67 |
+
from flask_migrate import Migrate
|
| 68 |
+
import requests
|
| 69 |
+
import functools
|
| 70 |
+
import time # Added for potential retries
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def get_client_ip():
|
| 74 |
+
"""Get the client's IP address, handling proxies and load balancers."""
|
| 75 |
+
# Check for forwarded headers first (common with reverse proxies)
|
| 76 |
+
if request.headers.get('X-Forwarded-For'):
|
| 77 |
+
# X-Forwarded-For can contain multiple IPs, take the first one
|
| 78 |
+
return request.headers.get('X-Forwarded-For').split(',')[0].strip()
|
| 79 |
+
elif request.headers.get('X-Real-IP'):
|
| 80 |
+
return request.headers.get('X-Real-IP')
|
| 81 |
+
elif request.headers.get('CF-Connecting-IP'): # Cloudflare
|
| 82 |
+
return request.headers.get('CF-Connecting-IP')
|
| 83 |
+
else:
|
| 84 |
+
return request.remote_addr
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
# Load environment variables
|
| 88 |
+
if not IS_SPACES:
|
| 89 |
+
load_dotenv() # Only load .env if not running in a Hugging Face Space
|
| 90 |
|
| 91 |
app = Flask(__name__)
|
| 92 |
+
app.config["SECRET_KEY"] = os.getenv("SECRET_KEY", os.urandom(24))
|
| 93 |
+
app.config["SQLALCHEMY_DATABASE_URI"] = os.getenv(
|
| 94 |
+
"DATABASE_URI", "sqlite:///tts_arena.db"
|
| 95 |
+
)
|
| 96 |
+
app.config["SQLALCHEMY_TRACK_MODIFICATIONS"] = False
|
| 97 |
+
app.config["SESSION_COOKIE_SECURE"] = True
|
| 98 |
+
app.config["SESSION_COOKIE_SAMESITE"] = (
|
| 99 |
+
"None" if IS_SPACES else "Lax"
|
| 100 |
+
) # HF Spaces uses iframes to load the app, so we need to set SAMESITE to None
|
| 101 |
+
app.config["PERMANENT_SESSION_LIFETIME"] = timedelta(days=30) # Set to desired duration
|
| 102 |
+
|
| 103 |
+
# Force HTTPS when running in HuggingFace Spaces
|
| 104 |
+
if IS_SPACES:
|
| 105 |
+
app.config["PREFERRED_URL_SCHEME"] = "https"
|
| 106 |
+
|
| 107 |
+
# Cloudflare Turnstile settings
|
| 108 |
+
app.config["TURNSTILE_ENABLED"] = (
|
| 109 |
+
os.getenv("TURNSTILE_ENABLED", "False").lower() == "true"
|
| 110 |
+
)
|
| 111 |
+
app.config["TURNSTILE_SITE_KEY"] = os.getenv("TURNSTILE_SITE_KEY", "")
|
| 112 |
+
app.config["TURNSTILE_SECRET_KEY"] = os.getenv("TURNSTILE_SECRET_KEY", "")
|
| 113 |
+
app.config["TURNSTILE_VERIFY_URL"] = (
|
| 114 |
+
"https://challenges.cloudflare.com/turnstile/v0/siteverify"
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
migrate = Migrate(app, db)
|
| 118 |
+
|
| 119 |
+
# Initialize extensions
|
| 120 |
+
db.init_app(app)
|
| 121 |
+
login_manager = LoginManager()
|
| 122 |
+
login_manager.init_app(app)
|
| 123 |
+
login_manager.login_view = "auth.login"
|
| 124 |
+
|
| 125 |
+
# Initialize OAuth
|
| 126 |
+
init_oauth(app)
|
| 127 |
+
|
| 128 |
+
# Configure rate limits
|
| 129 |
+
limiter = Limiter(
|
| 130 |
+
app=app,
|
| 131 |
+
key_func=get_remote_address,
|
| 132 |
+
default_limits=["2000 per day", "50 per minute"],
|
| 133 |
+
storage_uri="memory://",
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
# TTS Cache Configuration - Read from environment
|
| 137 |
+
TTS_CACHE_SIZE = int(os.getenv("TTS_CACHE_SIZE", "10"))
|
| 138 |
+
CACHE_AUDIO_SUBDIR = "cache"
|
| 139 |
+
tts_cache = {} # sentence -> {model_a, model_b, audio_a, audio_b, created_at}
|
| 140 |
+
tts_cache_lock = threading.Lock()
|
| 141 |
+
SMOOTHING_FACTOR_MODEL_SELECTION = 500 # For weighted random model selection
|
| 142 |
+
# Increased max_workers to 8 for concurrent generation/refill
|
| 143 |
+
cache_executor = ThreadPoolExecutor(max_workers=8, thread_name_prefix='CacheReplacer')
|
| 144 |
+
all_harvard_sentences = [] # Keep the full list available
|
| 145 |
+
|
| 146 |
+
# Create temp directories
|
| 147 |
+
TEMP_AUDIO_DIR = os.path.join(tempfile.gettempdir(), "tts_arena_audio")
|
| 148 |
+
CACHE_AUDIO_DIR = os.path.join(TEMP_AUDIO_DIR, CACHE_AUDIO_SUBDIR)
|
| 149 |
+
os.makedirs(TEMP_AUDIO_DIR, exist_ok=True)
|
| 150 |
+
os.makedirs(CACHE_AUDIO_DIR, exist_ok=True) # Ensure cache subdir exists
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
# Store active TTS sessions
|
| 154 |
+
app.tts_sessions = {}
|
| 155 |
+
tts_sessions = app.tts_sessions
|
| 156 |
+
|
| 157 |
+
# Store active conversational sessions
|
| 158 |
+
app.conversational_sessions = {}
|
| 159 |
+
conversational_sessions = app.conversational_sessions
|
| 160 |
+
|
| 161 |
+
# Register blueprints
|
| 162 |
+
app.register_blueprint(auth, url_prefix="/auth")
|
| 163 |
+
app.register_blueprint(admin)
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
@login_manager.user_loader
|
| 167 |
+
def load_user(user_id):
|
| 168 |
+
return User.query.get(int(user_id))
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
@app.before_request
|
| 172 |
+
def before_request():
|
| 173 |
+
g.user = current_user
|
| 174 |
+
g.is_admin = is_admin(current_user)
|
| 175 |
+
|
| 176 |
+
# Ensure HTTPS for HuggingFace Spaces environment
|
| 177 |
+
if IS_SPACES and request.headers.get("X-Forwarded-Proto") == "http":
|
| 178 |
+
url = request.url.replace("http://", "https://", 1)
|
| 179 |
+
return redirect(url, code=301)
|
| 180 |
+
|
| 181 |
+
# Check if Turnstile verification is required
|
| 182 |
+
if app.config["TURNSTILE_ENABLED"]:
|
| 183 |
+
# Exclude verification routes
|
| 184 |
+
excluded_routes = ["verify_turnstile", "turnstile_page", "static"]
|
| 185 |
+
if request.endpoint not in excluded_routes:
|
| 186 |
+
# Check if user is verified
|
| 187 |
+
if not session.get("turnstile_verified"):
|
| 188 |
+
# Save original URL for redirect after verification
|
| 189 |
+
redirect_url = request.url
|
| 190 |
+
# Force HTTPS in HuggingFace Spaces
|
| 191 |
+
if IS_SPACES and redirect_url.startswith("http://"):
|
| 192 |
+
redirect_url = redirect_url.replace("http://", "https://", 1)
|
| 193 |
+
|
| 194 |
+
# If it's an API request, return a JSON response
|
| 195 |
+
if request.path.startswith("/api/"):
|
| 196 |
+
return jsonify({"error": "Turnstile verification required"}), 403
|
| 197 |
+
# For regular requests, redirect to verification page
|
| 198 |
+
return redirect(url_for("turnstile_page", redirect_url=redirect_url))
|
| 199 |
+
else:
|
| 200 |
+
# Check if verification has expired (default: 24 hours)
|
| 201 |
+
verification_timeout = (
|
| 202 |
+
int(os.getenv("TURNSTILE_TIMEOUT_HOURS", "24")) * 3600
|
| 203 |
+
) # Convert hours to seconds
|
| 204 |
+
verified_at = session.get("turnstile_verified_at", 0)
|
| 205 |
+
current_time = datetime.utcnow().timestamp()
|
| 206 |
+
|
| 207 |
+
if current_time - verified_at > verification_timeout:
|
| 208 |
+
# Verification expired, clear status and redirect to verification page
|
| 209 |
+
session.pop("turnstile_verified", None)
|
| 210 |
+
session.pop("turnstile_verified_at", None)
|
| 211 |
+
|
| 212 |
+
redirect_url = request.url
|
| 213 |
+
# Force HTTPS in HuggingFace Spaces
|
| 214 |
+
if IS_SPACES and redirect_url.startswith("http://"):
|
| 215 |
+
redirect_url = redirect_url.replace("http://", "https://", 1)
|
| 216 |
+
|
| 217 |
+
if request.path.startswith("/api/"):
|
| 218 |
+
return jsonify({"error": "Turnstile verification expired"}), 403
|
| 219 |
+
return redirect(
|
| 220 |
+
url_for("turnstile_page", redirect_url=redirect_url)
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
@app.route("/turnstile", methods=["GET"])
|
| 225 |
+
def turnstile_page():
|
| 226 |
+
"""Display Cloudflare Turnstile verification page"""
|
| 227 |
+
redirect_url = request.args.get("redirect_url", url_for("arena", _external=True))
|
| 228 |
+
|
| 229 |
+
# Force HTTPS in HuggingFace Spaces
|
| 230 |
+
if IS_SPACES and redirect_url.startswith("http://"):
|
| 231 |
+
redirect_url = redirect_url.replace("http://", "https://", 1)
|
| 232 |
+
|
| 233 |
+
return render_template(
|
| 234 |
+
"turnstile.html",
|
| 235 |
+
turnstile_site_key=app.config["TURNSTILE_SITE_KEY"],
|
| 236 |
+
redirect_url=redirect_url,
|
| 237 |
+
)
|
| 238 |
|
| 239 |
+
|
| 240 |
+
@app.route("/verify-turnstile", methods=["POST"])
|
| 241 |
+
def verify_turnstile():
|
| 242 |
+
"""Verify Cloudflare Turnstile token"""
|
| 243 |
+
token = request.form.get("cf-turnstile-response")
|
| 244 |
+
redirect_url = request.form.get("redirect_url", url_for("arena", _external=True))
|
| 245 |
+
|
| 246 |
+
# Force HTTPS in HuggingFace Spaces
|
| 247 |
+
if IS_SPACES and redirect_url.startswith("http://"):
|
| 248 |
+
redirect_url = redirect_url.replace("http://", "https://", 1)
|
| 249 |
+
|
| 250 |
+
if not token:
|
| 251 |
+
# If AJAX request, return JSON error
|
| 252 |
+
if request.headers.get("X-Requested-With") == "XMLHttpRequest":
|
| 253 |
+
return (
|
| 254 |
+
jsonify({"success": False, "error": "Missing verification token"}),
|
| 255 |
+
400,
|
| 256 |
+
)
|
| 257 |
+
# Otherwise redirect back to turnstile page
|
| 258 |
+
return redirect(url_for("turnstile_page", redirect_url=redirect_url))
|
| 259 |
+
|
| 260 |
+
# Verify token with Cloudflare
|
| 261 |
+
data = {
|
| 262 |
+
"secret": app.config["TURNSTILE_SECRET_KEY"],
|
| 263 |
+
"response": token,
|
| 264 |
+
"remoteip": request.remote_addr,
|
| 265 |
+
}
|
| 266 |
+
|
| 267 |
+
try:
|
| 268 |
+
response = requests.post(app.config["TURNSTILE_VERIFY_URL"], data=data)
|
| 269 |
+
result = response.json()
|
| 270 |
+
|
| 271 |
+
if result.get("success"):
|
| 272 |
+
# Set verification status in session
|
| 273 |
+
session["turnstile_verified"] = True
|
| 274 |
+
session["turnstile_verified_at"] = datetime.utcnow().timestamp()
|
| 275 |
+
|
| 276 |
+
# Determine response type based on request
|
| 277 |
+
is_xhr = request.headers.get("X-Requested-With") == "XMLHttpRequest"
|
| 278 |
+
accepts_json = "application/json" in request.headers.get("Accept", "")
|
| 279 |
+
|
| 280 |
+
# If AJAX or JSON request, return success JSON
|
| 281 |
+
if is_xhr or accepts_json:
|
| 282 |
+
return jsonify({"success": True, "redirect": redirect_url})
|
| 283 |
+
|
| 284 |
+
# For regular form submissions, redirect to the target URL
|
| 285 |
+
return redirect(redirect_url)
|
| 286 |
+
else:
|
| 287 |
+
# Verification failed
|
| 288 |
+
app.logger.warning(f"Turnstile verification failed: {result}")
|
| 289 |
+
|
| 290 |
+
# If AJAX request, return JSON error
|
| 291 |
+
if request.headers.get("X-Requested-With") == "XMLHttpRequest":
|
| 292 |
+
return jsonify({"success": False, "error": "Verification failed"}), 403
|
| 293 |
+
|
| 294 |
+
# Otherwise redirect back to turnstile page
|
| 295 |
+
return redirect(url_for("turnstile_page", redirect_url=redirect_url))
|
| 296 |
+
|
| 297 |
+
except Exception as e:
|
| 298 |
+
app.logger.error(f"Turnstile verification error: {str(e)}")
|
| 299 |
+
|
| 300 |
+
# If AJAX request, return JSON error
|
| 301 |
+
if request.headers.get("X-Requested-With") == "XMLHttpRequest":
|
| 302 |
+
return (
|
| 303 |
+
jsonify(
|
| 304 |
+
{"success": False, "error": "Server error during verification"}
|
| 305 |
+
),
|
| 306 |
+
500,
|
| 307 |
+
)
|
| 308 |
+
|
| 309 |
+
# Otherwise redirect back to turnstile page
|
| 310 |
+
return redirect(url_for("turnstile_page", redirect_url=redirect_url))
|
| 311 |
+
|
| 312 |
+
# Load sentences from the TTS-AGI/arena-prompts dataset
|
| 313 |
+
print("Loading TTS-AGI/arena-prompts dataset...")
|
| 314 |
+
dataset = load_dataset("TTS-AGI/arena-prompts", split="train")
|
| 315 |
+
# Extract the text column and clean up
|
| 316 |
+
all_harvard_sentences = [item['text'].strip() for item in dataset if item['text'] and item['text'].strip()]
|
| 317 |
+
print(f"Loaded {len(all_harvard_sentences)} sentences from dataset")
|
| 318 |
+
|
| 319 |
+
# Initialize initial_sentences as empty - will be populated with unconsumed sentences only
|
| 320 |
+
initial_sentences = []
|
| 321 |
|
| 322 |
@app.route("/")
|
| 323 |
+
def arena():
|
| 324 |
+
# Pass a subset of sentences for the random button fallback
|
| 325 |
+
return render_template("arena.html", harvard_sentences=json.dumps(initial_sentences))
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
@app.route("/leaderboard")
|
| 329 |
+
def leaderboard():
|
| 330 |
+
tts_leaderboard = get_leaderboard_data(ModelType.TTS)
|
| 331 |
+
conversational_leaderboard = get_leaderboard_data(ModelType.CONVERSATIONAL)
|
| 332 |
+
top_voters = get_top_voters(10) # Get top 10 voters
|
| 333 |
+
|
| 334 |
+
# Initialize personal leaderboard data
|
| 335 |
+
tts_personal_leaderboard = None
|
| 336 |
+
conversational_personal_leaderboard = None
|
| 337 |
+
user_leaderboard_visibility = None
|
| 338 |
+
|
| 339 |
+
# If user is logged in, get their personal leaderboard and visibility setting
|
| 340 |
+
if current_user.is_authenticated:
|
| 341 |
+
tts_personal_leaderboard = get_user_leaderboard(current_user.id, ModelType.TTS)
|
| 342 |
+
conversational_personal_leaderboard = get_user_leaderboard(
|
| 343 |
+
current_user.id, ModelType.CONVERSATIONAL
|
| 344 |
+
)
|
| 345 |
+
user_leaderboard_visibility = current_user.show_in_leaderboard
|
| 346 |
+
|
| 347 |
+
# Get key dates for the timeline
|
| 348 |
+
tts_key_dates = get_key_historical_dates(ModelType.TTS)
|
| 349 |
+
conversational_key_dates = get_key_historical_dates(ModelType.CONVERSATIONAL)
|
| 350 |
+
|
| 351 |
+
# Format dates for display in the dropdown
|
| 352 |
+
formatted_tts_dates = [date.strftime("%B %Y") for date in tts_key_dates]
|
| 353 |
+
formatted_conversational_dates = [
|
| 354 |
+
date.strftime("%B %Y") for date in conversational_key_dates
|
| 355 |
+
]
|
| 356 |
+
|
| 357 |
+
return render_template(
|
| 358 |
+
"leaderboard.html",
|
| 359 |
+
tts_leaderboard=tts_leaderboard,
|
| 360 |
+
conversational_leaderboard=conversational_leaderboard,
|
| 361 |
+
tts_personal_leaderboard=tts_personal_leaderboard,
|
| 362 |
+
conversational_personal_leaderboard=conversational_personal_leaderboard,
|
| 363 |
+
tts_key_dates=tts_key_dates,
|
| 364 |
+
conversational_key_dates=conversational_key_dates,
|
| 365 |
+
formatted_tts_dates=formatted_tts_dates,
|
| 366 |
+
formatted_conversational_dates=formatted_conversational_dates,
|
| 367 |
+
top_voters=top_voters,
|
| 368 |
+
user_leaderboard_visibility=user_leaderboard_visibility
|
| 369 |
+
)
|
| 370 |
+
|
| 371 |
+
|
| 372 |
+
@app.route("/api/historical-leaderboard/<model_type>")
|
| 373 |
+
def historical_leaderboard(model_type):
|
| 374 |
+
"""Get historical leaderboard data for a specific date"""
|
| 375 |
+
if model_type not in [ModelType.TTS, ModelType.CONVERSATIONAL]:
|
| 376 |
+
return jsonify({"error": "Invalid model type"}), 400
|
| 377 |
+
|
| 378 |
+
# Get date from query parameter
|
| 379 |
+
date_str = request.args.get("date")
|
| 380 |
+
if not date_str:
|
| 381 |
+
return jsonify({"error": "Date parameter is required"}), 400
|
| 382 |
+
|
| 383 |
+
try:
|
| 384 |
+
# Parse date from URL parameter (format: YYYY-MM-DD)
|
| 385 |
+
target_date = datetime.strptime(date_str, "%Y-%m-%d")
|
| 386 |
+
|
| 387 |
+
# Get historical leaderboard data
|
| 388 |
+
leaderboard_data = get_historical_leaderboard_data(model_type, target_date)
|
| 389 |
+
|
| 390 |
+
return jsonify(
|
| 391 |
+
{"date": target_date.strftime("%B %d, %Y"), "leaderboard": leaderboard_data}
|
| 392 |
+
)
|
| 393 |
+
except ValueError:
|
| 394 |
+
return jsonify({"error": "Invalid date format. Use YYYY-MM-DD"}), 400
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
@app.route("/about")
|
| 398 |
+
def about():
|
| 399 |
+
return render_template("about.html")
|
| 400 |
+
|
| 401 |
+
|
| 402 |
+
# --- TTS Caching Functions ---
|
| 403 |
+
|
| 404 |
+
def generate_and_save_tts(text, model_id, output_dir):
|
| 405 |
+
"""Generates TTS and saves it to a specific directory, returning the full path."""
|
| 406 |
+
temp_audio_path = None # Initialize to None
|
| 407 |
+
try:
|
| 408 |
+
app.logger.debug(f"[TTS Gen {model_id}] Starting generation for: '{text[:30]}...'")
|
| 409 |
+
# If predict_tts saves file itself and returns path:
|
| 410 |
+
temp_audio_path = predict_tts(text, model_id)
|
| 411 |
+
app.logger.debug(f"[TTS Gen {model_id}] predict_tts returned: {temp_audio_path}")
|
| 412 |
+
|
| 413 |
+
if not temp_audio_path or not os.path.exists(temp_audio_path):
|
| 414 |
+
app.logger.warning(f"[TTS Gen {model_id}] predict_tts failed or returned invalid path: {temp_audio_path}")
|
| 415 |
+
raise ValueError("predict_tts did not return a valid path or file does not exist")
|
| 416 |
+
|
| 417 |
+
file_uuid = str(uuid.uuid4())
|
| 418 |
+
dest_path = os.path.join(output_dir, f"{file_uuid}.wav")
|
| 419 |
+
app.logger.debug(f"[TTS Gen {model_id}] Moving {temp_audio_path} to {dest_path}")
|
| 420 |
+
# Move the file generated by predict_tts to the target cache directory
|
| 421 |
+
shutil.move(temp_audio_path, dest_path)
|
| 422 |
+
app.logger.debug(f"[TTS Gen {model_id}] Move successful. Returning {dest_path}")
|
| 423 |
+
return dest_path
|
| 424 |
+
|
| 425 |
+
except Exception as e:
|
| 426 |
+
app.logger.error(f"Error generating/saving TTS for model {model_id} and text '{text[:30]}...': {str(e)}")
|
| 427 |
+
# Ensure temporary file from predict_tts (if any) is cleaned up
|
| 428 |
+
if temp_audio_path and os.path.exists(temp_audio_path):
|
| 429 |
+
try:
|
| 430 |
+
app.logger.debug(f"[TTS Gen {model_id}] Cleaning up temporary file {temp_audio_path} after error.")
|
| 431 |
+
os.remove(temp_audio_path)
|
| 432 |
+
except OSError:
|
| 433 |
+
pass # Ignore error if file couldn't be removed
|
| 434 |
+
return None
|
| 435 |
+
|
| 436 |
+
|
| 437 |
+
def _generate_cache_entry_task(sentence):
|
| 438 |
+
"""Task function to generate audio for a sentence and add to cache."""
|
| 439 |
+
# Wrap the entire task in an application context
|
| 440 |
+
with app.app_context():
|
| 441 |
+
if not sentence:
|
| 442 |
+
# Select a new sentence if not provided (for replacement)
|
| 443 |
+
with tts_cache_lock:
|
| 444 |
+
cached_keys = set(tts_cache.keys())
|
| 445 |
+
# Get unconsumed sentences that are also not already cached
|
| 446 |
+
unconsumed_sentences = get_unconsumed_sentences(all_harvard_sentences)
|
| 447 |
+
available_sentences = [s for s in unconsumed_sentences if s not in cached_keys]
|
| 448 |
+
if not available_sentences:
|
| 449 |
+
app.logger.warning("No more unconsumed sentences available for caching. All sentences have been consumed.")
|
| 450 |
+
return
|
| 451 |
+
sentence = random.choice(available_sentences)
|
| 452 |
+
|
| 453 |
+
# app.logger.info removed duplicate log
|
| 454 |
+
print(f"[Cache Task] Querying models for: '{sentence[:50]}...'")
|
| 455 |
+
available_models = Model.query.filter_by(
|
| 456 |
+
model_type=ModelType.TTS, is_active=True
|
| 457 |
+
).all()
|
| 458 |
+
|
| 459 |
+
if len(available_models) < 2:
|
| 460 |
+
app.logger.error("Not enough active TTS models to generate cache entry.")
|
| 461 |
+
return
|
| 462 |
+
|
| 463 |
+
try:
|
| 464 |
+
models = get_weighted_random_models(available_models, 2, ModelType.TTS)
|
| 465 |
+
model_a_id = models[0].id
|
| 466 |
+
model_b_id = models[1].id
|
| 467 |
+
|
| 468 |
+
# Generate audio concurrently using a local executor for clarity within the task
|
| 469 |
+
with ThreadPoolExecutor(max_workers=2, thread_name_prefix='AudioGen') as audio_executor:
|
| 470 |
+
future_a = audio_executor.submit(generate_and_save_tts, sentence, model_a_id, CACHE_AUDIO_DIR)
|
| 471 |
+
future_b = audio_executor.submit(generate_and_save_tts, sentence, model_b_id, CACHE_AUDIO_DIR)
|
| 472 |
+
|
| 473 |
+
timeout_seconds = 120
|
| 474 |
+
audio_a_path = future_a.result(timeout=timeout_seconds)
|
| 475 |
+
audio_b_path = future_b.result(timeout=timeout_seconds)
|
| 476 |
+
|
| 477 |
+
if audio_a_path and audio_b_path:
|
| 478 |
+
with tts_cache_lock:
|
| 479 |
+
# Only add if the sentence isn't already back in the cache
|
| 480 |
+
# And ensure cache size doesn't exceed limit
|
| 481 |
+
if sentence not in tts_cache and len(tts_cache) < TTS_CACHE_SIZE:
|
| 482 |
+
tts_cache[sentence] = {
|
| 483 |
+
"model_a": model_a_id,
|
| 484 |
+
"model_b": model_b_id,
|
| 485 |
+
"audio_a": audio_a_path,
|
| 486 |
+
"audio_b": audio_b_path,
|
| 487 |
+
"created_at": datetime.utcnow(),
|
| 488 |
+
}
|
| 489 |
+
# Mark sentence as consumed for cache usage
|
| 490 |
+
mark_sentence_consumed(sentence, usage_type='cache')
|
| 491 |
+
app.logger.info(f"Successfully cached entry for: '{sentence[:50]}...'")
|
| 492 |
+
elif sentence in tts_cache:
|
| 493 |
+
app.logger.warning(f"Sentence '{sentence[:50]}...' already re-cached. Discarding new generation.")
|
| 494 |
+
# Clean up the newly generated files if not added
|
| 495 |
+
if os.path.exists(audio_a_path): os.remove(audio_a_path)
|
| 496 |
+
if os.path.exists(audio_b_path): os.remove(audio_b_path)
|
| 497 |
+
else: # Cache is full
|
| 498 |
+
app.logger.warning(f"Cache is full ({len(tts_cache)} entries). Discarding new generation for '{sentence[:50]}...'.")
|
| 499 |
+
# Clean up the newly generated files if not added
|
| 500 |
+
if os.path.exists(audio_a_path): os.remove(audio_a_path)
|
| 501 |
+
if os.path.exists(audio_b_path): os.remove(audio_b_path)
|
| 502 |
+
|
| 503 |
+
else:
|
| 504 |
+
app.logger.error(f"Failed to generate one or both audio files for cache: '{sentence[:50]}...'")
|
| 505 |
+
# Clean up whichever file might have been created
|
| 506 |
+
if audio_a_path and os.path.exists(audio_a_path): os.remove(audio_a_path)
|
| 507 |
+
if audio_b_path and os.path.exists(audio_b_path): os.remove(audio_b_path)
|
| 508 |
+
|
| 509 |
+
except Exception as e:
|
| 510 |
+
# Log the exception within the app context
|
| 511 |
+
app.logger.error(f"Exception in _generate_cache_entry_task for '{sentence[:50]}...': {str(e)}", exc_info=True)
|
| 512 |
+
|
| 513 |
+
|
| 514 |
+
def update_initial_sentences():
|
| 515 |
+
"""Update initial sentences to only include unconsumed ones."""
|
| 516 |
+
global initial_sentences
|
| 517 |
+
try:
|
| 518 |
+
unconsumed_for_initial = get_unconsumed_sentences(all_harvard_sentences)
|
| 519 |
+
if unconsumed_for_initial:
|
| 520 |
+
initial_sentences = random.sample(unconsumed_for_initial, min(len(unconsumed_for_initial), 500))
|
| 521 |
+
print(f"Updated initial sentences with {len(initial_sentences)} unconsumed sentences")
|
| 522 |
+
else:
|
| 523 |
+
print("Warning: No unconsumed sentences available for initial selection, disabling fallback")
|
| 524 |
+
initial_sentences = [] # No fallback to consumed sentences
|
| 525 |
+
except Exception as e:
|
| 526 |
+
print(f"Error updating initial sentences: {e}, disabling fallback for security")
|
| 527 |
+
initial_sentences = [] # No fallback to consumed sentences
|
| 528 |
+
|
| 529 |
+
|
| 530 |
+
def initialize_tts_cache():
|
| 531 |
+
print("Initializing TTS cache")
|
| 532 |
+
"""Selects initial sentences and starts generation tasks."""
|
| 533 |
+
with app.app_context(): # Ensure access to models
|
| 534 |
+
if not all_harvard_sentences:
|
| 535 |
+
app.logger.error("Harvard sentences not loaded. Cannot initialize cache.")
|
| 536 |
+
return
|
| 537 |
+
|
| 538 |
+
# Update initial sentences with unconsumed ones
|
| 539 |
+
update_initial_sentences()
|
| 540 |
+
|
| 541 |
+
# Only use unconsumed sentences for initial cache population
|
| 542 |
+
unconsumed_sentences = get_unconsumed_sentences(all_harvard_sentences)
|
| 543 |
+
if not unconsumed_sentences:
|
| 544 |
+
app.logger.error("No unconsumed sentences available for cache initialization. Cache will remain empty.")
|
| 545 |
+
app.logger.warning("WARNING: All sentences from the dataset have been consumed. No new TTS generations will be possible.")
|
| 546 |
+
return
|
| 547 |
+
initial_selection = random.sample(unconsumed_sentences, min(len(unconsumed_sentences), TTS_CACHE_SIZE))
|
| 548 |
+
app.logger.info(f"Initializing TTS cache with {len(initial_selection)} sentences...")
|
| 549 |
+
|
| 550 |
+
for sentence in initial_selection:
|
| 551 |
+
# Use the main cache_executor for initial population too
|
| 552 |
+
cache_executor.submit(_generate_cache_entry_task, sentence)
|
| 553 |
+
app.logger.info("Submitted initial cache generation tasks.")
|
| 554 |
+
|
| 555 |
+
# --- End TTS Caching Functions ---
|
| 556 |
+
|
| 557 |
+
|
| 558 |
+
@app.route("/api/tts/generate", methods=["POST"])
|
| 559 |
+
@limiter.limit("10 per minute") # Keep limit, cached responses are still requests
|
| 560 |
+
def generate_tts():
|
| 561 |
+
# If verification not setup, handle it first
|
| 562 |
+
if app.config["TURNSTILE_ENABLED"] and not session.get("turnstile_verified"):
|
| 563 |
+
return jsonify({"error": "Turnstile verification required"}), 403
|
| 564 |
+
|
| 565 |
+
# Require user to be logged in to generate audio
|
| 566 |
+
if not current_user.is_authenticated:
|
| 567 |
+
return jsonify({"error": "You must be logged in to generate audio"}), 401
|
| 568 |
+
|
| 569 |
+
data = request.json
|
| 570 |
+
text = data.get("text", "").strip() # Ensure text is stripped
|
| 571 |
+
|
| 572 |
+
if not text or len(text) > 1000:
|
| 573 |
+
return jsonify({"error": "Invalid or too long text"}), 400
|
| 574 |
+
|
| 575 |
+
# Check if sentence has already been consumed
|
| 576 |
+
if is_sentence_consumed(text):
|
| 577 |
+
remaining_count = len(get_unconsumed_sentences(all_harvard_sentences))
|
| 578 |
+
if remaining_count == 0:
|
| 579 |
+
return jsonify({"error": "This sentence has already been used and no unconsumed sentences remain. All sentences from the dataset have been consumed."}), 400
|
| 580 |
+
else:
|
| 581 |
+
return jsonify({"error": f"This sentence has already been used. Please select a different sentence. {remaining_count} sentences remain available."}), 400
|
| 582 |
+
|
| 583 |
+
# --- Cache Check ---
|
| 584 |
+
cache_hit = False
|
| 585 |
+
session_data_from_cache = None
|
| 586 |
+
with tts_cache_lock:
|
| 587 |
+
if text in tts_cache:
|
| 588 |
+
cache_hit = True
|
| 589 |
+
cached_entry = tts_cache.pop(text) # Remove from cache immediately
|
| 590 |
+
app.logger.info(f"TTS Cache HIT for: '{text[:50]}...'")
|
| 591 |
+
|
| 592 |
+
# Prepare session data using cached info
|
| 593 |
+
session_id = str(uuid.uuid4())
|
| 594 |
+
session_data_from_cache = {
|
| 595 |
+
"model_a": cached_entry["model_a"],
|
| 596 |
+
"model_b": cached_entry["model_b"],
|
| 597 |
+
"audio_a": cached_entry["audio_a"], # Paths are now from cache_dir
|
| 598 |
+
"audio_b": cached_entry["audio_b"],
|
| 599 |
+
"text": text,
|
| 600 |
+
"created_at": datetime.utcnow(),
|
| 601 |
+
"expires_at": datetime.utcnow() + timedelta(minutes=30),
|
| 602 |
+
"voted": False,
|
| 603 |
+
"cache_hit": True,
|
| 604 |
+
}
|
| 605 |
+
app.tts_sessions[session_id] = session_data_from_cache
|
| 606 |
+
|
| 607 |
+
# Note: Sentence was already marked as consumed when it was cached
|
| 608 |
+
# No need to mark it again here
|
| 609 |
+
|
| 610 |
+
# --- Trigger background tasks to refill the cache ---
|
| 611 |
+
# Calculate how many slots need refilling
|
| 612 |
+
current_cache_size = len(tts_cache) # Size *before* adding potentially new items
|
| 613 |
+
needed_refills = TTS_CACHE_SIZE - current_cache_size
|
| 614 |
+
# Limit concurrent refills to 8 or the actual need
|
| 615 |
+
refills_to_submit = min(needed_refills, 8)
|
| 616 |
+
|
| 617 |
+
if refills_to_submit > 0:
|
| 618 |
+
app.logger.info(f"Cache hit: Submitting {refills_to_submit} background task(s) to refill cache (current size: {current_cache_size}, target: {TTS_CACHE_SIZE}).")
|
| 619 |
+
for _ in range(refills_to_submit):
|
| 620 |
+
# Pass None to signal replacement selection within the task
|
| 621 |
+
cache_executor.submit(_generate_cache_entry_task, None)
|
| 622 |
+
else:
|
| 623 |
+
app.logger.info(f"Cache hit: Cache is already full or at target size ({current_cache_size}/{TTS_CACHE_SIZE}). No refill tasks submitted.")
|
| 624 |
+
# --- End Refill Trigger ---
|
| 625 |
+
|
| 626 |
+
if cache_hit and session_data_from_cache:
|
| 627 |
+
# Return response using cached data
|
| 628 |
+
# Note: The files are now managed by the session lifecycle (cleanup_session)
|
| 629 |
+
return jsonify(
|
| 630 |
+
{
|
| 631 |
+
"session_id": session_id,
|
| 632 |
+
"audio_a": f"/api/tts/audio/{session_id}/a",
|
| 633 |
+
"audio_b": f"/api/tts/audio/{session_id}/b",
|
| 634 |
+
"expires_in": 1800, # 30 minutes in seconds
|
| 635 |
+
"cache_hit": True,
|
| 636 |
+
}
|
| 637 |
+
)
|
| 638 |
+
# --- End Cache Check ---
|
| 639 |
+
|
| 640 |
+
# --- Cache Miss: Generate on the fly ---
|
| 641 |
+
app.logger.info(f"TTS Cache MISS for: '{text[:50]}...'. Generating on the fly.")
|
| 642 |
+
available_models = Model.query.filter_by(
|
| 643 |
+
model_type=ModelType.TTS, is_active=True
|
| 644 |
+
).all()
|
| 645 |
+
if len(available_models) < 2:
|
| 646 |
+
return jsonify({"error": "Not enough TTS models available"}), 500
|
| 647 |
+
|
| 648 |
+
selected_models = get_weighted_random_models(available_models, 2, ModelType.TTS)
|
| 649 |
+
|
| 650 |
+
try:
|
| 651 |
+
audio_files = []
|
| 652 |
+
model_ids = []
|
| 653 |
+
|
| 654 |
+
# Function to process a single model (generate directly to TEMP_AUDIO_DIR, not cache subdir)
|
| 655 |
+
def process_model_on_the_fly(model):
|
| 656 |
+
# Generate and save directly to the main temp dir
|
| 657 |
+
# Assume predict_tts handles saving temporary files
|
| 658 |
+
temp_audio_path = predict_tts(text, model.id)
|
| 659 |
+
if not temp_audio_path or not os.path.exists(temp_audio_path):
|
| 660 |
+
raise ValueError(f"predict_tts failed for model {model.id}")
|
| 661 |
+
|
| 662 |
+
# Create a unique name in the main TEMP_AUDIO_DIR for the session
|
| 663 |
+
file_uuid = str(uuid.uuid4())
|
| 664 |
+
dest_path = os.path.join(TEMP_AUDIO_DIR, f"{file_uuid}.wav")
|
| 665 |
+
shutil.move(temp_audio_path, dest_path) # Move from predict_tts's temp location
|
| 666 |
+
|
| 667 |
+
return {"model_id": model.id, "audio_path": dest_path}
|
| 668 |
+
|
| 669 |
+
|
| 670 |
+
# Use ThreadPoolExecutor to process models concurrently
|
| 671 |
+
with ThreadPoolExecutor(max_workers=2) as executor:
|
| 672 |
+
results = list(executor.map(process_model_on_the_fly, selected_models))
|
| 673 |
+
|
| 674 |
+
# Extract results
|
| 675 |
+
for result in results:
|
| 676 |
+
model_ids.append(result["model_id"])
|
| 677 |
+
audio_files.append(result["audio_path"])
|
| 678 |
+
|
| 679 |
+
# Create session
|
| 680 |
+
session_id = str(uuid.uuid4())
|
| 681 |
+
app.tts_sessions[session_id] = {
|
| 682 |
+
"model_a": model_ids[0],
|
| 683 |
+
"model_b": model_ids[1],
|
| 684 |
+
"audio_a": audio_files[0], # Paths are now from TEMP_AUDIO_DIR directly
|
| 685 |
+
"audio_b": audio_files[1],
|
| 686 |
+
"text": text,
|
| 687 |
+
"created_at": datetime.utcnow(),
|
| 688 |
+
"expires_at": datetime.utcnow() + timedelta(minutes=30),
|
| 689 |
+
"voted": False,
|
| 690 |
+
"cache_hit": False,
|
| 691 |
+
}
|
| 692 |
+
|
| 693 |
+
# Mark sentence as consumed for direct usage
|
| 694 |
+
mark_sentence_consumed(text, session_id=session_id, usage_type='direct')
|
| 695 |
+
|
| 696 |
+
# Return audio file paths and session
|
| 697 |
+
return jsonify(
|
| 698 |
+
{
|
| 699 |
+
"session_id": session_id,
|
| 700 |
+
"audio_a": f"/api/tts/audio/{session_id}/a",
|
| 701 |
+
"audio_b": f"/api/tts/audio/{session_id}/b",
|
| 702 |
+
"expires_in": 1800,
|
| 703 |
+
"cache_hit": False,
|
| 704 |
+
}
|
| 705 |
+
)
|
| 706 |
+
|
| 707 |
+
except Exception as e:
|
| 708 |
+
app.logger.error(f"TTS on-the-fly generation error: {str(e)}", exc_info=True)
|
| 709 |
+
# Cleanup any files potentially created during the failed attempt
|
| 710 |
+
if 'results' in locals():
|
| 711 |
+
for res in results:
|
| 712 |
+
if 'audio_path' in res and os.path.exists(res['audio_path']):
|
| 713 |
+
try:
|
| 714 |
+
os.remove(res['audio_path'])
|
| 715 |
+
except OSError:
|
| 716 |
+
pass
|
| 717 |
+
return jsonify({"error": "Failed to generate TTS"}), 500
|
| 718 |
+
# --- End Cache Miss ---
|
| 719 |
+
|
| 720 |
+
|
| 721 |
+
@app.route("/api/tts/audio/<session_id>/<model_key>")
|
| 722 |
+
def get_audio(session_id, model_key):
|
| 723 |
+
# If verification not setup, handle it first
|
| 724 |
+
if app.config["TURNSTILE_ENABLED"] and not session.get("turnstile_verified"):
|
| 725 |
+
return jsonify({"error": "Turnstile verification required"}), 403
|
| 726 |
+
|
| 727 |
+
if session_id not in app.tts_sessions:
|
| 728 |
+
return jsonify({"error": "Invalid or expired session"}), 404
|
| 729 |
+
|
| 730 |
+
session_data = app.tts_sessions[session_id]
|
| 731 |
+
|
| 732 |
+
# Check if session expired
|
| 733 |
+
if datetime.utcnow() > session_data["expires_at"]:
|
| 734 |
+
cleanup_session(session_id)
|
| 735 |
+
return jsonify({"error": "Session expired"}), 410
|
| 736 |
+
|
| 737 |
+
if model_key == "a":
|
| 738 |
+
audio_path = session_data["audio_a"]
|
| 739 |
+
elif model_key == "b":
|
| 740 |
+
audio_path = session_data["audio_b"]
|
| 741 |
+
else:
|
| 742 |
+
return jsonify({"error": "Invalid model key"}), 400
|
| 743 |
+
|
| 744 |
+
# Check if file exists
|
| 745 |
+
if not os.path.exists(audio_path):
|
| 746 |
+
return jsonify({"error": "Audio file not found"}), 404
|
| 747 |
+
|
| 748 |
+
return send_file(audio_path, mimetype="audio/wav")
|
| 749 |
+
|
| 750 |
+
|
| 751 |
+
@app.route("/api/tts/vote", methods=["POST"])
|
| 752 |
+
@limiter.limit("30 per minute")
|
| 753 |
+
def submit_vote():
|
| 754 |
+
# If verification not setup, handle it first
|
| 755 |
+
if app.config["TURNSTILE_ENABLED"] and not session.get("turnstile_verified"):
|
| 756 |
+
return jsonify({"error": "Turnstile verification required"}), 403
|
| 757 |
+
|
| 758 |
+
# Require user to be logged in to vote
|
| 759 |
+
if not current_user.is_authenticated:
|
| 760 |
+
return jsonify({"error": "You must be logged in to vote"}), 401
|
| 761 |
+
|
| 762 |
+
# Security checks for vote manipulation prevention
|
| 763 |
+
client_ip = get_client_ip()
|
| 764 |
+
vote_allowed, security_reason, security_score = is_vote_allowed(current_user.id, client_ip)
|
| 765 |
+
|
| 766 |
+
if not vote_allowed:
|
| 767 |
+
app.logger.warning(f"Vote blocked for user {current_user.username} (ID: {current_user.id}): {security_reason} (Score: {security_score})")
|
| 768 |
+
return jsonify({"error": f"Vote not allowed: {security_reason}"}), 403
|
| 769 |
+
|
| 770 |
+
data = request.json
|
| 771 |
+
session_id = data.get("session_id")
|
| 772 |
+
chosen_model_key = data.get("chosen_model") # "a" or "b"
|
| 773 |
+
|
| 774 |
+
if not session_id or session_id not in app.tts_sessions:
|
| 775 |
+
return jsonify({"error": "Invalid or expired session"}), 404
|
| 776 |
+
|
| 777 |
+
if not chosen_model_key or chosen_model_key not in ["a", "b"]:
|
| 778 |
+
return jsonify({"error": "Invalid chosen model"}), 400
|
| 779 |
+
|
| 780 |
+
session_data = app.tts_sessions[session_id]
|
| 781 |
+
|
| 782 |
+
# Check if session expired
|
| 783 |
+
if datetime.utcnow() > session_data["expires_at"]:
|
| 784 |
+
cleanup_session(session_id)
|
| 785 |
+
return jsonify({"error": "Session expired"}), 410
|
| 786 |
+
|
| 787 |
+
# Check if already voted
|
| 788 |
+
if session_data["voted"]:
|
| 789 |
+
return jsonify({"error": "Vote already submitted for this session"}), 400
|
| 790 |
+
|
| 791 |
+
# Get model IDs and audio paths
|
| 792 |
+
chosen_id = (
|
| 793 |
+
session_data["model_a"] if chosen_model_key == "a" else session_data["model_b"]
|
| 794 |
+
)
|
| 795 |
+
rejected_id = (
|
| 796 |
+
session_data["model_b"] if chosen_model_key == "a" else session_data["model_a"]
|
| 797 |
+
)
|
| 798 |
+
chosen_audio_path = (
|
| 799 |
+
session_data["audio_a"] if chosen_model_key == "a" else session_data["audio_b"]
|
| 800 |
+
)
|
| 801 |
+
rejected_audio_path = (
|
| 802 |
+
session_data["audio_b"] if chosen_model_key == "a" else session_data["audio_a"]
|
| 803 |
+
)
|
| 804 |
+
|
| 805 |
+
# Calculate session duration and gather analytics data
|
| 806 |
+
vote_time = datetime.utcnow()
|
| 807 |
+
session_duration = (vote_time - session_data["created_at"]).total_seconds()
|
| 808 |
+
client_ip = get_client_ip()
|
| 809 |
+
user_agent = request.headers.get('User-Agent')
|
| 810 |
+
cache_hit = session_data.get("cache_hit", False)
|
| 811 |
+
|
| 812 |
+
# Record vote in database with analytics data
|
| 813 |
+
vote, error = record_vote(
|
| 814 |
+
current_user.id,
|
| 815 |
+
session_data["text"],
|
| 816 |
+
chosen_id,
|
| 817 |
+
rejected_id,
|
| 818 |
+
ModelType.TTS,
|
| 819 |
+
session_duration=session_duration,
|
| 820 |
+
ip_address=client_ip,
|
| 821 |
+
user_agent=user_agent,
|
| 822 |
+
generation_date=session_data["created_at"],
|
| 823 |
+
cache_hit=cache_hit,
|
| 824 |
+
all_dataset_sentences=all_harvard_sentences
|
| 825 |
+
)
|
| 826 |
+
|
| 827 |
+
if error:
|
| 828 |
+
return jsonify({"error": error}), 500
|
| 829 |
+
|
| 830 |
+
# Mark sentence as consumed AFTER successful vote recording (only for dataset sentences)
|
| 831 |
+
if vote and vote.sentence_origin == 'dataset' and vote.counts_for_public_leaderboard:
|
| 832 |
+
try:
|
| 833 |
+
mark_sentence_consumed(session_data["text"], session_id=session_id, usage_type='voted')
|
| 834 |
+
app.logger.info(f"Marked dataset sentence as consumed after vote: '{session_data['text'][:50]}...'")
|
| 835 |
+
except Exception as e:
|
| 836 |
+
app.logger.error(f"Error marking sentence as consumed after vote: {str(e)}")
|
| 837 |
+
|
| 838 |
+
# --- Save preference data ---
|
| 839 |
+
try:
|
| 840 |
+
vote_uuid = str(uuid.uuid4())
|
| 841 |
+
vote_dir = os.path.join("./votes", vote_uuid)
|
| 842 |
+
os.makedirs(vote_dir, exist_ok=True)
|
| 843 |
+
|
| 844 |
+
# Copy audio files
|
| 845 |
+
shutil.copy(chosen_audio_path, os.path.join(vote_dir, "chosen.wav"))
|
| 846 |
+
shutil.copy(rejected_audio_path, os.path.join(vote_dir, "rejected.wav"))
|
| 847 |
+
|
| 848 |
+
# Create metadata
|
| 849 |
+
chosen_model_obj = Model.query.get(chosen_id)
|
| 850 |
+
rejected_model_obj = Model.query.get(rejected_id)
|
| 851 |
+
metadata = {
|
| 852 |
+
"text": session_data["text"],
|
| 853 |
+
"chosen_model": chosen_model_obj.name if chosen_model_obj else "Unknown",
|
| 854 |
+
"chosen_model_id": chosen_model_obj.id if chosen_model_obj else "Unknown",
|
| 855 |
+
"rejected_model": rejected_model_obj.name if rejected_model_obj else "Unknown",
|
| 856 |
+
"rejected_model_id": rejected_model_obj.id if rejected_model_obj else "Unknown",
|
| 857 |
+
"session_id": session_id,
|
| 858 |
+
"timestamp": datetime.utcnow().isoformat(),
|
| 859 |
+
"username": current_user.username,
|
| 860 |
+
"model_type": "TTS"
|
| 861 |
+
}
|
| 862 |
+
with open(os.path.join(vote_dir, "metadata.json"), "w") as f:
|
| 863 |
+
json.dump(metadata, f, indent=2)
|
| 864 |
+
|
| 865 |
+
except Exception as e:
|
| 866 |
+
app.logger.error(f"Error saving preference data for vote {session_id}: {str(e)}")
|
| 867 |
+
# Continue even if saving preference data fails, vote is already recorded
|
| 868 |
+
|
| 869 |
+
# Mark session as voted
|
| 870 |
+
session_data["voted"] = True
|
| 871 |
+
|
| 872 |
+
# Check for coordinated voting campaigns (async to not slow down response)
|
| 873 |
+
try:
|
| 874 |
+
from threading import Thread
|
| 875 |
+
campaign_check_thread = Thread(target=check_for_coordinated_campaigns)
|
| 876 |
+
campaign_check_thread.daemon = True
|
| 877 |
+
campaign_check_thread.start()
|
| 878 |
+
except Exception as e:
|
| 879 |
+
app.logger.error(f"Error starting coordinated campaign check thread: {str(e)}")
|
| 880 |
+
|
| 881 |
+
# Return updated models (use previously fetched objects)
|
| 882 |
+
return jsonify(
|
| 883 |
+
{
|
| 884 |
+
"success": True,
|
| 885 |
+
"chosen_model": {"id": chosen_id, "name": chosen_model_obj.name if chosen_model_obj else "Unknown"},
|
| 886 |
+
"rejected_model": {
|
| 887 |
+
"id": rejected_id,
|
| 888 |
+
"name": rejected_model_obj.name if rejected_model_obj else "Unknown",
|
| 889 |
+
},
|
| 890 |
+
"names": {
|
| 891 |
+
"a": (
|
| 892 |
+
chosen_model_obj.name if chosen_model_key == "a" else rejected_model_obj.name
|
| 893 |
+
if chosen_model_obj and rejected_model_obj else "Unknown"
|
| 894 |
+
),
|
| 895 |
+
"b": (
|
| 896 |
+
rejected_model_obj.name if chosen_model_key == "a" else chosen_model_obj.name
|
| 897 |
+
if chosen_model_obj and rejected_model_obj else "Unknown"
|
| 898 |
+
),
|
| 899 |
+
},
|
| 900 |
+
}
|
| 901 |
+
)
|
| 902 |
+
|
| 903 |
+
|
| 904 |
+
def cleanup_session(session_id):
|
| 905 |
+
"""Remove session and its audio files"""
|
| 906 |
+
if session_id in app.tts_sessions:
|
| 907 |
+
session = app.tts_sessions[session_id]
|
| 908 |
+
|
| 909 |
+
# Remove audio files
|
| 910 |
+
for audio_file in [session["audio_a"], session["audio_b"]]:
|
| 911 |
+
if os.path.exists(audio_file):
|
| 912 |
+
try:
|
| 913 |
+
os.remove(audio_file)
|
| 914 |
+
except Exception as e:
|
| 915 |
+
app.logger.error(f"Error removing audio file: {str(e)}")
|
| 916 |
+
|
| 917 |
+
# Remove session
|
| 918 |
+
del app.tts_sessions[session_id]
|
| 919 |
+
|
| 920 |
+
|
| 921 |
+
@app.route("/api/conversational/generate", methods=["POST"])
|
| 922 |
+
@limiter.limit("5 per minute")
|
| 923 |
+
def generate_podcast():
|
| 924 |
+
# If verification not setup, handle it first
|
| 925 |
+
if app.config["TURNSTILE_ENABLED"] and not session.get("turnstile_verified"):
|
| 926 |
+
return jsonify({"error": "Turnstile verification required"}), 403
|
| 927 |
+
|
| 928 |
+
# Require user to be logged in to generate audio
|
| 929 |
+
if not current_user.is_authenticated:
|
| 930 |
+
return jsonify({"error": "You must be logged in to generate audio"}), 401
|
| 931 |
+
|
| 932 |
+
data = request.json
|
| 933 |
+
script = data.get("script")
|
| 934 |
+
|
| 935 |
+
if not script or not isinstance(script, list) or len(script) < 2:
|
| 936 |
+
return jsonify({"error": "Invalid script format or too short"}), 400
|
| 937 |
+
|
| 938 |
+
# Validate script format
|
| 939 |
+
for line in script:
|
| 940 |
+
if not isinstance(line, dict) or "text" not in line or "speaker_id" not in line:
|
| 941 |
+
return (
|
| 942 |
+
jsonify(
|
| 943 |
+
{
|
| 944 |
+
"error": "Invalid script line format. Each line must have text and speaker_id"
|
| 945 |
+
}
|
| 946 |
+
),
|
| 947 |
+
400,
|
| 948 |
+
)
|
| 949 |
+
if (
|
| 950 |
+
not line["text"]
|
| 951 |
+
or not isinstance(line["speaker_id"], int)
|
| 952 |
+
or line["speaker_id"] not in [0, 1]
|
| 953 |
+
):
|
| 954 |
+
return (
|
| 955 |
+
jsonify({"error": "Invalid script content. Speaker ID must be 0 or 1"}),
|
| 956 |
+
400,
|
| 957 |
+
)
|
| 958 |
+
|
| 959 |
+
# Get two conversational models (currently only CSM and PlayDialog)
|
| 960 |
+
available_models = Model.query.filter_by(
|
| 961 |
+
model_type=ModelType.CONVERSATIONAL, is_active=True
|
| 962 |
+
).all()
|
| 963 |
+
|
| 964 |
+
if len(available_models) < 2:
|
| 965 |
+
return jsonify({"error": "Not enough conversational models available"}), 500
|
| 966 |
+
|
| 967 |
+
selected_models = get_weighted_random_models(available_models, 2, ModelType.CONVERSATIONAL)
|
| 968 |
+
|
| 969 |
+
try:
|
| 970 |
+
# Generate audio for both models concurrently
|
| 971 |
+
audio_files = []
|
| 972 |
+
model_ids = []
|
| 973 |
+
|
| 974 |
+
# Function to process a single model
|
| 975 |
+
def process_model(model):
|
| 976 |
+
# Call conversational TTS service
|
| 977 |
+
audio_content = predict_tts(script, model.id)
|
| 978 |
+
|
| 979 |
+
# Save to temp file with unique name
|
| 980 |
+
file_uuid = str(uuid.uuid4())
|
| 981 |
+
dest_path = os.path.join(TEMP_AUDIO_DIR, f"{file_uuid}.wav")
|
| 982 |
+
|
| 983 |
+
with open(dest_path, "wb") as f:
|
| 984 |
+
f.write(audio_content)
|
| 985 |
+
|
| 986 |
+
return {"model_id": model.id, "audio_path": dest_path}
|
| 987 |
+
|
| 988 |
+
# Use ThreadPoolExecutor to process models concurrently
|
| 989 |
+
with ThreadPoolExecutor(max_workers=2) as executor:
|
| 990 |
+
results = list(executor.map(process_model, selected_models))
|
| 991 |
+
|
| 992 |
+
# Extract results
|
| 993 |
+
for result in results:
|
| 994 |
+
model_ids.append(result["model_id"])
|
| 995 |
+
audio_files.append(result["audio_path"])
|
| 996 |
+
|
| 997 |
+
# Create session
|
| 998 |
+
session_id = str(uuid.uuid4())
|
| 999 |
+
script_text = " ".join([line["text"] for line in script])
|
| 1000 |
+
app.conversational_sessions[session_id] = {
|
| 1001 |
+
"model_a": model_ids[0],
|
| 1002 |
+
"model_b": model_ids[1],
|
| 1003 |
+
"audio_a": audio_files[0],
|
| 1004 |
+
"audio_b": audio_files[1],
|
| 1005 |
+
"text": script_text[:1000], # Limit text length
|
| 1006 |
+
"created_at": datetime.utcnow(),
|
| 1007 |
+
"expires_at": datetime.utcnow() + timedelta(minutes=30),
|
| 1008 |
+
"voted": False,
|
| 1009 |
+
"script": script,
|
| 1010 |
+
"cache_hit": False, # Conversational is always generated on-demand
|
| 1011 |
+
}
|
| 1012 |
+
|
| 1013 |
+
# Return audio file paths and session
|
| 1014 |
+
return jsonify(
|
| 1015 |
+
{
|
| 1016 |
+
"session_id": session_id,
|
| 1017 |
+
"audio_a": f"/api/conversational/audio/{session_id}/a",
|
| 1018 |
+
"audio_b": f"/api/conversational/audio/{session_id}/b",
|
| 1019 |
+
"expires_in": 1800, # 30 minutes in seconds
|
| 1020 |
+
}
|
| 1021 |
+
)
|
| 1022 |
+
|
| 1023 |
+
except Exception as e:
|
| 1024 |
+
app.logger.error(f"Conversational generation error: {str(e)}")
|
| 1025 |
+
return jsonify({"error": f"Failed to generate podcast: {str(e)}"}), 500
|
| 1026 |
+
|
| 1027 |
+
|
| 1028 |
+
@app.route("/api/conversational/audio/<session_id>/<model_key>")
|
| 1029 |
+
def get_podcast_audio(session_id, model_key):
|
| 1030 |
+
# If verification not setup, handle it first
|
| 1031 |
+
if app.config["TURNSTILE_ENABLED"] and not session.get("turnstile_verified"):
|
| 1032 |
+
return jsonify({"error": "Turnstile verification required"}), 403
|
| 1033 |
+
|
| 1034 |
+
if session_id not in app.conversational_sessions:
|
| 1035 |
+
return jsonify({"error": "Invalid or expired session"}), 404
|
| 1036 |
+
|
| 1037 |
+
session_data = app.conversational_sessions[session_id]
|
| 1038 |
+
|
| 1039 |
+
# Check if session expired
|
| 1040 |
+
if datetime.utcnow() > session_data["expires_at"]:
|
| 1041 |
+
cleanup_conversational_session(session_id)
|
| 1042 |
+
return jsonify({"error": "Session expired"}), 410
|
| 1043 |
+
|
| 1044 |
+
if model_key == "a":
|
| 1045 |
+
audio_path = session_data["audio_a"]
|
| 1046 |
+
elif model_key == "b":
|
| 1047 |
+
audio_path = session_data["audio_b"]
|
| 1048 |
+
else:
|
| 1049 |
+
return jsonify({"error": "Invalid model key"}), 400
|
| 1050 |
+
|
| 1051 |
+
# Check if file exists
|
| 1052 |
+
if not os.path.exists(audio_path):
|
| 1053 |
+
return jsonify({"error": "Audio file not found"}), 404
|
| 1054 |
+
|
| 1055 |
+
return send_file(audio_path, mimetype="audio/wav")
|
| 1056 |
+
|
| 1057 |
+
|
| 1058 |
+
@app.route("/api/conversational/vote", methods=["POST"])
|
| 1059 |
+
@limiter.limit("30 per minute")
|
| 1060 |
+
def submit_podcast_vote():
|
| 1061 |
+
# If verification not setup, handle it first
|
| 1062 |
+
if app.config["TURNSTILE_ENABLED"] and not session.get("turnstile_verified"):
|
| 1063 |
+
return jsonify({"error": "Turnstile verification required"}), 403
|
| 1064 |
+
|
| 1065 |
+
# Require user to be logged in to vote
|
| 1066 |
+
if not current_user.is_authenticated:
|
| 1067 |
+
return jsonify({"error": "You must be logged in to vote"}), 401
|
| 1068 |
+
|
| 1069 |
+
# Security checks for vote manipulation prevention
|
| 1070 |
+
client_ip = get_client_ip()
|
| 1071 |
+
vote_allowed, security_reason, security_score = is_vote_allowed(current_user.id, client_ip)
|
| 1072 |
+
|
| 1073 |
+
if not vote_allowed:
|
| 1074 |
+
app.logger.warning(f"Conversational vote blocked for user {current_user.username} (ID: {current_user.id}): {security_reason} (Score: {security_score})")
|
| 1075 |
+
return jsonify({"error": f"Vote not allowed: {security_reason}"}), 403
|
| 1076 |
+
|
| 1077 |
+
data = request.json
|
| 1078 |
+
session_id = data.get("session_id")
|
| 1079 |
+
chosen_model_key = data.get("chosen_model") # "a" or "b"
|
| 1080 |
+
|
| 1081 |
+
if not session_id or session_id not in app.conversational_sessions:
|
| 1082 |
+
return jsonify({"error": "Invalid or expired session"}), 404
|
| 1083 |
+
|
| 1084 |
+
if not chosen_model_key or chosen_model_key not in ["a", "b"]:
|
| 1085 |
+
return jsonify({"error": "Invalid chosen model"}), 400
|
| 1086 |
+
|
| 1087 |
+
session_data = app.conversational_sessions[session_id]
|
| 1088 |
+
|
| 1089 |
+
# Check if session expired
|
| 1090 |
+
if datetime.utcnow() > session_data["expires_at"]:
|
| 1091 |
+
cleanup_conversational_session(session_id)
|
| 1092 |
+
return jsonify({"error": "Session expired"}), 410
|
| 1093 |
+
|
| 1094 |
+
# Check if already voted
|
| 1095 |
+
if session_data["voted"]:
|
| 1096 |
+
return jsonify({"error": "Vote already submitted for this session"}), 400
|
| 1097 |
+
|
| 1098 |
+
# Get model IDs and audio paths
|
| 1099 |
+
chosen_id = (
|
| 1100 |
+
session_data["model_a"] if chosen_model_key == "a" else session_data["model_b"]
|
| 1101 |
+
)
|
| 1102 |
+
rejected_id = (
|
| 1103 |
+
session_data["model_b"] if chosen_model_key == "a" else session_data["model_a"]
|
| 1104 |
+
)
|
| 1105 |
+
chosen_audio_path = (
|
| 1106 |
+
session_data["audio_a"] if chosen_model_key == "a" else session_data["audio_b"]
|
| 1107 |
+
)
|
| 1108 |
+
rejected_audio_path = (
|
| 1109 |
+
session_data["audio_b"] if chosen_model_key == "a" else session_data["audio_a"]
|
| 1110 |
+
)
|
| 1111 |
+
|
| 1112 |
+
# Calculate session duration and gather analytics data
|
| 1113 |
+
vote_time = datetime.utcnow()
|
| 1114 |
+
session_duration = (vote_time - session_data["created_at"]).total_seconds()
|
| 1115 |
+
client_ip = get_client_ip()
|
| 1116 |
+
user_agent = request.headers.get('User-Agent')
|
| 1117 |
+
cache_hit = session_data.get("cache_hit", False)
|
| 1118 |
+
|
| 1119 |
+
# Record vote in database with analytics data
|
| 1120 |
+
vote, error = record_vote(
|
| 1121 |
+
current_user.id,
|
| 1122 |
+
session_data["text"],
|
| 1123 |
+
chosen_id,
|
| 1124 |
+
rejected_id,
|
| 1125 |
+
ModelType.CONVERSATIONAL,
|
| 1126 |
+
session_duration=session_duration,
|
| 1127 |
+
ip_address=client_ip,
|
| 1128 |
+
user_agent=user_agent,
|
| 1129 |
+
generation_date=session_data["created_at"],
|
| 1130 |
+
cache_hit=cache_hit,
|
| 1131 |
+
all_dataset_sentences=all_harvard_sentences # Note: conversational uses scripts, not sentences
|
| 1132 |
+
)
|
| 1133 |
+
|
| 1134 |
+
if error:
|
| 1135 |
+
return jsonify({"error": error}), 500
|
| 1136 |
+
|
| 1137 |
+
# Mark sentence as consumed AFTER successful vote recording (only for dataset sentences)
|
| 1138 |
+
# Note: Conversational votes typically use custom scripts, not dataset sentences
|
| 1139 |
+
if vote and vote.sentence_origin == 'dataset' and vote.counts_for_public_leaderboard:
|
| 1140 |
+
try:
|
| 1141 |
+
mark_sentence_consumed(session_data["text"], session_id=session_id, usage_type='voted')
|
| 1142 |
+
app.logger.info(f"Marked dataset sentence as consumed after conversational vote: '{session_data['text'][:50]}...'")
|
| 1143 |
+
except Exception as e:
|
| 1144 |
+
app.logger.error(f"Error marking sentence as consumed after conversational vote: {str(e)}")
|
| 1145 |
+
|
| 1146 |
+
# --- Save preference data ---\
|
| 1147 |
+
try:
|
| 1148 |
+
vote_uuid = str(uuid.uuid4())
|
| 1149 |
+
vote_dir = os.path.join("./votes", vote_uuid)
|
| 1150 |
+
os.makedirs(vote_dir, exist_ok=True)
|
| 1151 |
+
|
| 1152 |
+
# Copy audio files
|
| 1153 |
+
shutil.copy(chosen_audio_path, os.path.join(vote_dir, "chosen.wav"))
|
| 1154 |
+
shutil.copy(rejected_audio_path, os.path.join(vote_dir, "rejected.wav"))
|
| 1155 |
+
|
| 1156 |
+
# Create metadata
|
| 1157 |
+
chosen_model_obj = Model.query.get(chosen_id)
|
| 1158 |
+
rejected_model_obj = Model.query.get(rejected_id)
|
| 1159 |
+
metadata = {
|
| 1160 |
+
"script": session_data["script"], # Save the full script
|
| 1161 |
+
"chosen_model": chosen_model_obj.name if chosen_model_obj else "Unknown",
|
| 1162 |
+
"chosen_model_id": chosen_model_obj.id if chosen_model_obj else "Unknown",
|
| 1163 |
+
"rejected_model": rejected_model_obj.name if rejected_model_obj else "Unknown",
|
| 1164 |
+
"rejected_model_id": rejected_model_obj.id if rejected_model_obj else "Unknown",
|
| 1165 |
+
"session_id": session_id,
|
| 1166 |
+
"timestamp": datetime.utcnow().isoformat(),
|
| 1167 |
+
"username": current_user.username,
|
| 1168 |
+
"model_type": "CONVERSATIONAL"
|
| 1169 |
+
}
|
| 1170 |
+
with open(os.path.join(vote_dir, "metadata.json"), "w") as f:
|
| 1171 |
+
json.dump(metadata, f, indent=2)
|
| 1172 |
+
|
| 1173 |
+
except Exception as e:
|
| 1174 |
+
app.logger.error(f"Error saving preference data for conversational vote {session_id}: {str(e)}")
|
| 1175 |
+
# Continue even if saving preference data fails, vote is already recorded
|
| 1176 |
+
|
| 1177 |
+
# Mark session as voted
|
| 1178 |
+
session_data["voted"] = True
|
| 1179 |
+
|
| 1180 |
+
# Check for coordinated voting campaigns (async to not slow down response)
|
| 1181 |
+
try:
|
| 1182 |
+
from threading import Thread
|
| 1183 |
+
campaign_check_thread = Thread(target=check_for_coordinated_campaigns)
|
| 1184 |
+
campaign_check_thread.daemon = True
|
| 1185 |
+
campaign_check_thread.start()
|
| 1186 |
+
except Exception as e:
|
| 1187 |
+
app.logger.error(f"Error starting coordinated campaign check thread: {str(e)}")
|
| 1188 |
+
|
| 1189 |
+
# Return updated models (use previously fetched objects)
|
| 1190 |
+
return jsonify(
|
| 1191 |
+
{
|
| 1192 |
+
"success": True,
|
| 1193 |
+
"chosen_model": {"id": chosen_id, "name": chosen_model_obj.name if chosen_model_obj else "Unknown"},
|
| 1194 |
+
"rejected_model": {
|
| 1195 |
+
"id": rejected_id,
|
| 1196 |
+
"name": rejected_model_obj.name if rejected_model_obj else "Unknown",
|
| 1197 |
+
},
|
| 1198 |
+
"names": {
|
| 1199 |
+
"a": Model.query.get(session_data["model_a"]).name,
|
| 1200 |
+
"b": Model.query.get(session_data["model_b"]).name,
|
| 1201 |
+
},
|
| 1202 |
+
}
|
| 1203 |
+
)
|
| 1204 |
+
|
| 1205 |
+
|
| 1206 |
+
def cleanup_conversational_session(session_id):
|
| 1207 |
+
"""Remove conversational session and its audio files"""
|
| 1208 |
+
if session_id in app.conversational_sessions:
|
| 1209 |
+
session = app.conversational_sessions[session_id]
|
| 1210 |
+
|
| 1211 |
+
# Remove audio files
|
| 1212 |
+
for audio_file in [session["audio_a"], session["audio_b"]]:
|
| 1213 |
+
if os.path.exists(audio_file):
|
| 1214 |
+
try:
|
| 1215 |
+
os.remove(audio_file)
|
| 1216 |
+
except Exception as e:
|
| 1217 |
+
app.logger.error(
|
| 1218 |
+
f"Error removing conversational audio file: {str(e)}"
|
| 1219 |
+
)
|
| 1220 |
+
|
| 1221 |
+
# Remove session
|
| 1222 |
+
del app.conversational_sessions[session_id]
|
| 1223 |
+
|
| 1224 |
+
|
| 1225 |
+
# Schedule periodic cleanup
|
| 1226 |
+
def setup_cleanup():
|
| 1227 |
+
def cleanup_expired_sessions():
|
| 1228 |
+
with app.app_context(): # Ensure app context for logging
|
| 1229 |
+
current_time = datetime.utcnow()
|
| 1230 |
+
# Cleanup TTS sessions
|
| 1231 |
+
expired_tts_sessions = [
|
| 1232 |
+
sid
|
| 1233 |
+
for sid, session_data in app.tts_sessions.items()
|
| 1234 |
+
if current_time > session_data["expires_at"]
|
| 1235 |
+
]
|
| 1236 |
+
for sid in expired_tts_sessions:
|
| 1237 |
+
cleanup_session(sid)
|
| 1238 |
+
|
| 1239 |
+
# Cleanup conversational sessions
|
| 1240 |
+
expired_conv_sessions = [
|
| 1241 |
+
sid
|
| 1242 |
+
for sid, session_data in app.conversational_sessions.items()
|
| 1243 |
+
if current_time > session_data["expires_at"]
|
| 1244 |
+
]
|
| 1245 |
+
for sid in expired_conv_sessions:
|
| 1246 |
+
cleanup_conversational_session(sid)
|
| 1247 |
+
app.logger.info(f"Cleaned up {len(expired_tts_sessions)} TTS and {len(expired_conv_sessions)} conversational sessions.")
|
| 1248 |
+
|
| 1249 |
+
# Also cleanup potentially expired cache entries (e.g., > 1 hour old)
|
| 1250 |
+
# This prevents stale cache entries if generation is slow or failing
|
| 1251 |
+
# cleanup_stale_cache_entries()
|
| 1252 |
+
|
| 1253 |
+
# Run cleanup every 15 minutes
|
| 1254 |
+
scheduler = BackgroundScheduler(daemon=True) # Run scheduler as daemon thread
|
| 1255 |
+
scheduler.add_job(cleanup_expired_sessions, "interval", minutes=15)
|
| 1256 |
+
scheduler.start()
|
| 1257 |
+
print("Cleanup scheduler started") # Use print for startup messages
|
| 1258 |
+
|
| 1259 |
+
|
| 1260 |
+
# Schedule periodic tasks (database sync and preference upload)
|
| 1261 |
+
def setup_periodic_tasks():
|
| 1262 |
+
"""Setup periodic database synchronization and preference data upload for Spaces"""
|
| 1263 |
+
if not IS_SPACES:
|
| 1264 |
+
return
|
| 1265 |
+
|
| 1266 |
+
db_path = app.config["SQLALCHEMY_DATABASE_URI"].replace("sqlite:///", "instance/") # Get relative path
|
| 1267 |
+
preferences_repo_id = "TTS-AGI/arena-v2-preferences"
|
| 1268 |
+
database_repo_id = "TTS-AGI/database-arena-v2"
|
| 1269 |
+
votes_dir = "./votes"
|
| 1270 |
+
|
| 1271 |
+
def sync_database():
|
| 1272 |
+
"""Uploads the database to HF dataset"""
|
| 1273 |
+
with app.app_context(): # Ensure app context for logging
|
| 1274 |
+
try:
|
| 1275 |
+
if not os.path.exists(db_path):
|
| 1276 |
+
app.logger.warning(f"Database file not found at {db_path}, skipping sync.")
|
| 1277 |
+
return
|
| 1278 |
+
|
| 1279 |
+
api = HfApi(token=os.getenv("HF_TOKEN"))
|
| 1280 |
+
api.upload_file(
|
| 1281 |
+
path_or_fileobj=db_path,
|
| 1282 |
+
path_in_repo="tts_arena.db",
|
| 1283 |
+
repo_id=database_repo_id,
|
| 1284 |
+
repo_type="dataset",
|
| 1285 |
+
)
|
| 1286 |
+
app.logger.info(f"Database uploaded to {database_repo_id} at {datetime.utcnow()}")
|
| 1287 |
+
except Exception as e:
|
| 1288 |
+
app.logger.error(f"Error uploading database to {database_repo_id}: {str(e)}")
|
| 1289 |
+
|
| 1290 |
+
def sync_preferences_data():
|
| 1291 |
+
"""Zips and uploads preference data folders in batches to HF dataset"""
|
| 1292 |
+
with app.app_context(): # Ensure app context for logging
|
| 1293 |
+
if not os.path.isdir(votes_dir):
|
| 1294 |
+
return # Don't log every 5 mins if dir doesn't exist yet
|
| 1295 |
+
|
| 1296 |
+
temp_batch_dir = None # Initialize to manage cleanup
|
| 1297 |
+
temp_individual_zip_dir = None # Initialize for individual zips
|
| 1298 |
+
local_batch_zip_path = None # Initialize for batch zip path
|
| 1299 |
+
|
| 1300 |
+
try:
|
| 1301 |
+
api = HfApi(token=os.getenv("HF_TOKEN"))
|
| 1302 |
+
vote_uuids = [d for d in os.listdir(votes_dir) if os.path.isdir(os.path.join(votes_dir, d))]
|
| 1303 |
+
|
| 1304 |
+
if not vote_uuids:
|
| 1305 |
+
return # No data to process
|
| 1306 |
+
|
| 1307 |
+
app.logger.info(f"Found {len(vote_uuids)} vote directories to process.")
|
| 1308 |
+
|
| 1309 |
+
# Create temporary directories
|
| 1310 |
+
temp_batch_dir = tempfile.mkdtemp(prefix="hf_batch_")
|
| 1311 |
+
temp_individual_zip_dir = tempfile.mkdtemp(prefix="hf_indiv_zips_")
|
| 1312 |
+
app.logger.debug(f"Created temp directories: {temp_batch_dir}, {temp_individual_zip_dir}")
|
| 1313 |
+
|
| 1314 |
+
processed_vote_dirs = []
|
| 1315 |
+
individual_zips_in_batch = []
|
| 1316 |
+
|
| 1317 |
+
# 1. Create individual zips and move them to the batch directory
|
| 1318 |
+
for vote_uuid in vote_uuids:
|
| 1319 |
+
dir_path = os.path.join(votes_dir, vote_uuid)
|
| 1320 |
+
individual_zip_base_path = os.path.join(temp_individual_zip_dir, vote_uuid)
|
| 1321 |
+
individual_zip_path = f"{individual_zip_base_path}.zip"
|
| 1322 |
+
|
| 1323 |
+
try:
|
| 1324 |
+
shutil.make_archive(individual_zip_base_path, 'zip', dir_path)
|
| 1325 |
+
app.logger.debug(f"Created individual zip: {individual_zip_path}")
|
| 1326 |
+
|
| 1327 |
+
# Move the created zip into the batch directory
|
| 1328 |
+
final_individual_zip_path = os.path.join(temp_batch_dir, f"{vote_uuid}.zip")
|
| 1329 |
+
shutil.move(individual_zip_path, final_individual_zip_path)
|
| 1330 |
+
app.logger.debug(f"Moved individual zip to batch dir: {final_individual_zip_path}")
|
| 1331 |
+
|
| 1332 |
+
processed_vote_dirs.append(dir_path) # Mark original dir for later cleanup
|
| 1333 |
+
individual_zips_in_batch.append(final_individual_zip_path)
|
| 1334 |
+
|
| 1335 |
+
except Exception as zip_err:
|
| 1336 |
+
app.logger.error(f"Error creating or moving zip for {vote_uuid}: {str(zip_err)}")
|
| 1337 |
+
# Clean up partial zip if it exists
|
| 1338 |
+
if os.path.exists(individual_zip_path):
|
| 1339 |
+
try:
|
| 1340 |
+
os.remove(individual_zip_path)
|
| 1341 |
+
except OSError:
|
| 1342 |
+
pass
|
| 1343 |
+
# Continue processing other votes
|
| 1344 |
+
|
| 1345 |
+
# Clean up the temporary dir used for creating individual zips
|
| 1346 |
+
shutil.rmtree(temp_individual_zip_dir)
|
| 1347 |
+
temp_individual_zip_dir = None # Mark as cleaned
|
| 1348 |
+
app.logger.debug("Cleaned up temporary individual zip directory.")
|
| 1349 |
+
|
| 1350 |
+
if not individual_zips_in_batch:
|
| 1351 |
+
app.logger.warning("No individual zips were successfully created for batching.")
|
| 1352 |
+
# Clean up batch dir if it's empty or only contains failed attempts
|
| 1353 |
+
if temp_batch_dir and os.path.exists(temp_batch_dir):
|
| 1354 |
+
shutil.rmtree(temp_batch_dir)
|
| 1355 |
+
temp_batch_dir = None
|
| 1356 |
+
return
|
| 1357 |
+
|
| 1358 |
+
# 2. Create the batch zip file
|
| 1359 |
+
batch_timestamp = datetime.utcnow().strftime("%Y%m%d_%H%M%S")
|
| 1360 |
+
batch_uuid_short = str(uuid.uuid4())[:8]
|
| 1361 |
+
batch_zip_filename = f"{batch_timestamp}_batch_{batch_uuid_short}.zip"
|
| 1362 |
+
# Create batch zip in a standard temp location first
|
| 1363 |
+
local_batch_zip_base = os.path.join(tempfile.gettempdir(), batch_zip_filename.replace('.zip', ''))
|
| 1364 |
+
local_batch_zip_path = f"{local_batch_zip_base}.zip"
|
| 1365 |
+
|
| 1366 |
+
app.logger.info(f"Creating batch zip: {local_batch_zip_path} with {len(individual_zips_in_batch)} individual zips.")
|
| 1367 |
+
shutil.make_archive(local_batch_zip_base, 'zip', temp_batch_dir)
|
| 1368 |
+
app.logger.info(f"Batch zip created successfully: {local_batch_zip_path}")
|
| 1369 |
+
|
| 1370 |
+
# 3. Upload the batch zip file
|
| 1371 |
+
hf_repo_path = f"votes/{year}/{month}/{batch_zip_filename}"
|
| 1372 |
+
app.logger.info(f"Uploading batch zip to HF Hub: {preferences_repo_id}/{hf_repo_path}")
|
| 1373 |
+
|
| 1374 |
+
api.upload_file(
|
| 1375 |
+
path_or_fileobj=local_batch_zip_path,
|
| 1376 |
+
path_in_repo=hf_repo_path,
|
| 1377 |
+
repo_id=preferences_repo_id,
|
| 1378 |
+
repo_type="dataset",
|
| 1379 |
+
commit_message=f"Add batch preference data {batch_zip_filename} ({len(individual_zips_in_batch)} votes)"
|
| 1380 |
+
)
|
| 1381 |
+
app.logger.info(f"Successfully uploaded batch {batch_zip_filename} to {preferences_repo_id}")
|
| 1382 |
+
|
| 1383 |
+
# 4. Cleanup after successful upload
|
| 1384 |
+
app.logger.info("Cleaning up local files after successful upload.")
|
| 1385 |
+
# Remove original vote directories that were successfully zipped and uploaded
|
| 1386 |
+
for dir_path in processed_vote_dirs:
|
| 1387 |
+
try:
|
| 1388 |
+
shutil.rmtree(dir_path)
|
| 1389 |
+
app.logger.debug(f"Removed original vote directory: {dir_path}")
|
| 1390 |
+
except OSError as e:
|
| 1391 |
+
app.logger.error(f"Error removing processed vote directory {dir_path}: {str(e)}")
|
| 1392 |
+
|
| 1393 |
+
# Remove the temporary batch directory (containing the individual zips)
|
| 1394 |
+
shutil.rmtree(temp_batch_dir)
|
| 1395 |
+
temp_batch_dir = None
|
| 1396 |
+
app.logger.debug("Removed temporary batch directory.")
|
| 1397 |
+
|
| 1398 |
+
# Remove the local batch zip file
|
| 1399 |
+
os.remove(local_batch_zip_path)
|
| 1400 |
+
local_batch_zip_path = None
|
| 1401 |
+
app.logger.debug("Removed local batch zip file.")
|
| 1402 |
+
|
| 1403 |
+
app.logger.info(f"Finished preference data sync. Uploaded batch {batch_zip_filename}.")
|
| 1404 |
+
|
| 1405 |
+
except Exception as e:
|
| 1406 |
+
app.logger.error(f"Error during preference data batch sync: {str(e)}", exc_info=True)
|
| 1407 |
+
# If upload failed, the local batch zip might exist, clean it up.
|
| 1408 |
+
if local_batch_zip_path and os.path.exists(local_batch_zip_path):
|
| 1409 |
+
try:
|
| 1410 |
+
os.remove(local_batch_zip_path)
|
| 1411 |
+
app.logger.debug("Cleaned up local batch zip after failed upload.")
|
| 1412 |
+
except OSError as clean_err:
|
| 1413 |
+
app.logger.error(f"Error cleaning up batch zip after failed upload: {clean_err}")
|
| 1414 |
+
# Do NOT remove temp_batch_dir if it exists; its contents will be retried next time.
|
| 1415 |
+
# Do NOT remove original vote directories if upload failed.
|
| 1416 |
+
|
| 1417 |
+
finally:
|
| 1418 |
+
# Final cleanup for temporary directories in case of unexpected exits
|
| 1419 |
+
if temp_individual_zip_dir and os.path.exists(temp_individual_zip_dir):
|
| 1420 |
+
try:
|
| 1421 |
+
shutil.rmtree(temp_individual_zip_dir)
|
| 1422 |
+
except Exception as final_clean_err:
|
| 1423 |
+
app.logger.error(f"Error in final cleanup (indiv zips): {final_clean_err}")
|
| 1424 |
+
# Only clean up batch dir in finally block if it *wasn't* kept intentionally after upload failure
|
| 1425 |
+
if temp_batch_dir and os.path.exists(temp_batch_dir):
|
| 1426 |
+
# Check if an upload attempt happened and failed
|
| 1427 |
+
upload_failed = 'e' in locals() and isinstance(e, Exception) # Crude check if exception occurred
|
| 1428 |
+
if not upload_failed: # If no upload error or upload succeeded, clean up
|
| 1429 |
+
try:
|
| 1430 |
+
shutil.rmtree(temp_batch_dir)
|
| 1431 |
+
except Exception as final_clean_err:
|
| 1432 |
+
app.logger.error(f"Error in final cleanup (batch dir): {final_clean_err}")
|
| 1433 |
+
else:
|
| 1434 |
+
app.logger.warning("Keeping temporary batch directory due to upload failure for next attempt.")
|
| 1435 |
+
|
| 1436 |
+
|
| 1437 |
+
# Schedule periodic tasks
|
| 1438 |
+
scheduler = BackgroundScheduler()
|
| 1439 |
+
# Sync database less frequently if needed, e.g., every 15 minutes
|
| 1440 |
+
scheduler.add_job(sync_database, "interval", minutes=15, id="sync_db_job")
|
| 1441 |
+
# Sync preferences more frequently
|
| 1442 |
+
scheduler.add_job(sync_preferences_data, "interval", minutes=5, id="sync_pref_job")
|
| 1443 |
+
scheduler.start()
|
| 1444 |
+
print("Periodic tasks scheduler started (DB sync and Preferences upload)") # Use print for startup
|
| 1445 |
+
|
| 1446 |
+
|
| 1447 |
+
@app.cli.command("init-db")
|
| 1448 |
+
def init_db():
|
| 1449 |
+
"""Initialize the database."""
|
| 1450 |
+
with app.app_context():
|
| 1451 |
+
db.create_all()
|
| 1452 |
+
print("Database initialized!")
|
| 1453 |
+
|
| 1454 |
+
|
| 1455 |
+
@app.route("/api/toggle-leaderboard-visibility", methods=["POST"])
|
| 1456 |
+
def toggle_leaderboard_visibility():
|
| 1457 |
+
"""Toggle whether the current user appears in the top voters leaderboard"""
|
| 1458 |
+
if not current_user.is_authenticated:
|
| 1459 |
+
return jsonify({"error": "You must be logged in to change this setting"}), 401
|
| 1460 |
+
|
| 1461 |
+
new_status = toggle_user_leaderboard_visibility(current_user.id)
|
| 1462 |
+
if new_status is None:
|
| 1463 |
+
return jsonify({"error": "User not found"}), 404
|
| 1464 |
+
|
| 1465 |
+
return jsonify({
|
| 1466 |
+
"success": True,
|
| 1467 |
+
"visible": new_status,
|
| 1468 |
+
"message": "You are now visible in the voters leaderboard" if new_status else "You are now hidden from the voters leaderboard"
|
| 1469 |
+
})
|
| 1470 |
+
|
| 1471 |
+
|
| 1472 |
+
@app.route("/api/tts/cached-sentences")
|
| 1473 |
+
def get_cached_sentences():
|
| 1474 |
+
"""Returns a list of unconsumed sentences available for random selection."""
|
| 1475 |
+
# Get unconsumed sentences from the full pool (not just cached ones)
|
| 1476 |
+
unconsumed_sentences = get_unconsumed_sentences(all_harvard_sentences)
|
| 1477 |
+
|
| 1478 |
+
# Limit the response size to avoid overwhelming the frontend
|
| 1479 |
+
max_sentences = 1000
|
| 1480 |
+
if len(unconsumed_sentences) > max_sentences:
|
| 1481 |
+
import random
|
| 1482 |
+
unconsumed_sentences = random.sample(unconsumed_sentences, max_sentences)
|
| 1483 |
+
|
| 1484 |
+
return jsonify(unconsumed_sentences)
|
| 1485 |
+
|
| 1486 |
+
|
| 1487 |
+
@app.route("/api/tts/sentence-stats")
|
| 1488 |
+
def get_sentence_stats():
|
| 1489 |
+
"""Returns statistics about sentence consumption."""
|
| 1490 |
+
total_sentences = len(all_harvard_sentences)
|
| 1491 |
+
consumed_count = get_consumed_sentences_count()
|
| 1492 |
+
remaining_count = total_sentences - consumed_count
|
| 1493 |
+
|
| 1494 |
+
return jsonify({
|
| 1495 |
+
"total_sentences": total_sentences,
|
| 1496 |
+
"consumed_sentences": consumed_count,
|
| 1497 |
+
"remaining_sentences": remaining_count,
|
| 1498 |
+
"consumption_percentage": round((consumed_count / total_sentences) * 100, 2) if total_sentences > 0 else 0
|
| 1499 |
+
})
|
| 1500 |
+
|
| 1501 |
+
|
| 1502 |
+
@app.route("/api/tts/random-sentence")
|
| 1503 |
+
def get_random_sentence():
|
| 1504 |
+
"""Returns a random unconsumed sentence."""
|
| 1505 |
+
random_sentence = get_random_unconsumed_sentence(all_harvard_sentences)
|
| 1506 |
+
if random_sentence:
|
| 1507 |
+
return jsonify({"sentence": random_sentence})
|
| 1508 |
+
else:
|
| 1509 |
+
total_sentences = len(all_harvard_sentences)
|
| 1510 |
+
consumed_count = get_consumed_sentences_count()
|
| 1511 |
+
return jsonify({
|
| 1512 |
+
"error": "No unconsumed sentences available",
|
| 1513 |
+
"details": f"All {total_sentences} sentences have been consumed ({consumed_count} total consumed)"
|
| 1514 |
+
}), 404
|
| 1515 |
+
|
| 1516 |
+
|
| 1517 |
+
def get_weighted_random_models(
|
| 1518 |
+
applicable_models: list[Model], num_to_select: int, model_type: ModelType
|
| 1519 |
+
) -> list[Model]:
|
| 1520 |
+
"""
|
| 1521 |
+
Selects a specified number of models randomly from a list of applicable_models,
|
| 1522 |
+
weighting models with fewer votes higher. A smoothing factor is used to ensure
|
| 1523 |
+
the preference is slight and to prevent models with zero votes from being
|
| 1524 |
+
overwhelmingly favored. Models are selected without replacement.
|
| 1525 |
+
|
| 1526 |
+
Assumes len(applicable_models) >= num_to_select, which should be checked by the caller.
|
| 1527 |
+
"""
|
| 1528 |
+
model_votes_counts = {}
|
| 1529 |
+
for model in applicable_models:
|
| 1530 |
+
votes = (
|
| 1531 |
+
Vote.query.filter(Vote.model_type == model_type)
|
| 1532 |
+
.filter(or_(Vote.model_chosen == model.id, Vote.model_rejected == model.id))
|
| 1533 |
+
.count()
|
| 1534 |
+
)
|
| 1535 |
+
model_votes_counts[model.id] = votes
|
| 1536 |
+
|
| 1537 |
+
weights = [
|
| 1538 |
+
1.0 / (model_votes_counts[model.id] + SMOOTHING_FACTOR_MODEL_SELECTION)
|
| 1539 |
+
for model in applicable_models
|
| 1540 |
+
]
|
| 1541 |
+
|
| 1542 |
+
selected_models_list = []
|
| 1543 |
+
# Create copies to modify during selection process
|
| 1544 |
+
current_candidates = list(applicable_models)
|
| 1545 |
+
current_weights = list(weights)
|
| 1546 |
+
|
| 1547 |
+
# Assumes num_to_select is positive and less than or equal to len(current_candidates)
|
| 1548 |
+
# Callers should ensure this (e.g., len(available_models) >= 2).
|
| 1549 |
+
for _ in range(num_to_select):
|
| 1550 |
+
if not current_candidates: # Safety break
|
| 1551 |
+
app.logger.warning("Not enough candidates left for weighted selection.")
|
| 1552 |
+
break
|
| 1553 |
+
|
| 1554 |
+
chosen_model = random.choices(current_candidates, weights=current_weights, k=1)[0]
|
| 1555 |
+
selected_models_list.append(chosen_model)
|
| 1556 |
+
|
| 1557 |
+
try:
|
| 1558 |
+
idx_to_remove = current_candidates.index(chosen_model)
|
| 1559 |
+
current_candidates.pop(idx_to_remove)
|
| 1560 |
+
current_weights.pop(idx_to_remove)
|
| 1561 |
+
except ValueError:
|
| 1562 |
+
# This should ideally not happen if chosen_model came from current_candidates.
|
| 1563 |
+
app.logger.error(f"Error removing model {chosen_model.id} from weighted selection candidates.")
|
| 1564 |
+
break # Avoid potential issues
|
| 1565 |
+
|
| 1566 |
+
return selected_models_list
|
| 1567 |
+
|
| 1568 |
+
|
| 1569 |
+
def check_for_coordinated_campaigns():
|
| 1570 |
+
"""Check all active models for potential coordinated voting campaigns"""
|
| 1571 |
+
try:
|
| 1572 |
+
from security import detect_coordinated_voting
|
| 1573 |
+
from models import Model, ModelType
|
| 1574 |
+
|
| 1575 |
+
# Check TTS models
|
| 1576 |
+
tts_models = Model.query.filter_by(model_type=ModelType.TTS, is_active=True).all()
|
| 1577 |
+
for model in tts_models:
|
| 1578 |
+
try:
|
| 1579 |
+
detect_coordinated_voting(model.id)
|
| 1580 |
+
except Exception as e:
|
| 1581 |
+
app.logger.error(f"Error checking coordinated voting for TTS model {model.id}: {str(e)}")
|
| 1582 |
+
|
| 1583 |
+
# Check conversational models
|
| 1584 |
+
conv_models = Model.query.filter_by(model_type=ModelType.CONVERSATIONAL, is_active=True).all()
|
| 1585 |
+
for model in conv_models:
|
| 1586 |
+
try:
|
| 1587 |
+
detect_coordinated_voting(model.id)
|
| 1588 |
+
except Exception as e:
|
| 1589 |
+
app.logger.error(f"Error checking coordinated voting for conversational model {model.id}: {str(e)}")
|
| 1590 |
+
|
| 1591 |
+
except Exception as e:
|
| 1592 |
+
app.logger.error(f"Error in coordinated campaign check: {str(e)}")
|
| 1593 |
+
|
| 1594 |
|
| 1595 |
if __name__ == "__main__":
|
| 1596 |
+
with app.app_context():
|
| 1597 |
+
# Ensure ./instance and ./votes directories exist
|
| 1598 |
+
os.makedirs("instance", exist_ok=True)
|
| 1599 |
+
os.makedirs("./votes", exist_ok=True) # Create votes directory if it doesn't exist
|
| 1600 |
+
os.makedirs(CACHE_AUDIO_DIR, exist_ok=True) # Ensure cache audio dir exists
|
| 1601 |
+
|
| 1602 |
+
# Clean up old cache audio files on startup
|
| 1603 |
+
try:
|
| 1604 |
+
app.logger.info(f"Clearing old cache audio files from {CACHE_AUDIO_DIR}")
|
| 1605 |
+
for filename in os.listdir(CACHE_AUDIO_DIR):
|
| 1606 |
+
file_path = os.path.join(CACHE_AUDIO_DIR, filename)
|
| 1607 |
+
try:
|
| 1608 |
+
if os.path.isfile(file_path) or os.path.islink(file_path):
|
| 1609 |
+
os.unlink(file_path)
|
| 1610 |
+
elif os.path.isdir(file_path):
|
| 1611 |
+
shutil.rmtree(file_path)
|
| 1612 |
+
except Exception as e:
|
| 1613 |
+
app.logger.error(f'Failed to delete {file_path}. Reason: {e}')
|
| 1614 |
+
except Exception as e:
|
| 1615 |
+
app.logger.error(f"Error clearing cache directory {CACHE_AUDIO_DIR}: {e}")
|
| 1616 |
+
|
| 1617 |
+
|
| 1618 |
+
# Download database if it doesn't exist (only on initial space start)
|
| 1619 |
+
if IS_SPACES and not os.path.exists(app.config["SQLALCHEMY_DATABASE_URI"].replace("sqlite:///", "")):
|
| 1620 |
+
try:
|
| 1621 |
+
print("Database not found, downloading from HF dataset...")
|
| 1622 |
+
hf_hub_download(
|
| 1623 |
+
repo_id="TTS-AGI/database-arena-v2",
|
| 1624 |
+
filename="tts_arena.db",
|
| 1625 |
+
repo_type="dataset",
|
| 1626 |
+
local_dir="instance", # download to instance/
|
| 1627 |
+
token=os.getenv("HF_TOKEN"),
|
| 1628 |
+
)
|
| 1629 |
+
print("Database downloaded successfully ✅")
|
| 1630 |
+
except Exception as e:
|
| 1631 |
+
print(f"Error downloading database from HF dataset: {str(e)} ⚠️")
|
| 1632 |
+
|
| 1633 |
+
|
| 1634 |
+
db.create_all() # Create tables if they don't exist
|
| 1635 |
+
insert_initial_models()
|
| 1636 |
+
# Setup background tasks
|
| 1637 |
+
initialize_tts_cache() # Start populating the cache
|
| 1638 |
+
setup_cleanup()
|
| 1639 |
+
setup_periodic_tasks() # Renamed function call
|
| 1640 |
+
|
| 1641 |
+
# Configure Flask to recognize HTTPS when behind a reverse proxy
|
| 1642 |
+
from werkzeug.middleware.proxy_fix import ProxyFix
|
| 1643 |
+
|
| 1644 |
+
# Apply ProxyFix middleware to handle reverse proxy headers
|
| 1645 |
+
# This ensures Flask generates correct URLs with https scheme
|
| 1646 |
+
# X-Forwarded-Proto header will be used to detect the original protocol
|
| 1647 |
+
app.wsgi_app = ProxyFix(app.wsgi_app, x_proto=1, x_host=1)
|
| 1648 |
+
|
| 1649 |
+
# Force Flask to prefer HTTPS for generated URLs
|
| 1650 |
+
app.config["PREFERRED_URL_SCHEME"] = "https"
|
| 1651 |
+
|
| 1652 |
+
from waitress import serve
|
| 1653 |
+
|
| 1654 |
+
# Configuration for 2 vCPUs:
|
| 1655 |
+
# - threads: typically 4-8 threads per CPU core is a good balance
|
| 1656 |
+
# - connection_limit: maximum concurrent connections
|
| 1657 |
+
# - channel_timeout: prevent hanging connections
|
| 1658 |
+
threads = 12 # 6 threads per vCPU is a good balance for mixed IO/CPU workloads
|
| 1659 |
+
|
| 1660 |
+
if IS_SPACES:
|
| 1661 |
+
serve(
|
| 1662 |
+
app,
|
| 1663 |
+
host="0.0.0.0",
|
| 1664 |
+
port=int(os.environ.get("PORT", 7860)),
|
| 1665 |
+
threads=threads,
|
| 1666 |
+
connection_limit=100,
|
| 1667 |
+
channel_timeout=30,
|
| 1668 |
+
url_scheme='https'
|
| 1669 |
+
)
|
| 1670 |
+
else:
|
| 1671 |
+
print(f"Starting Waitress server with {threads} threads")
|
| 1672 |
+
serve(
|
| 1673 |
+
app,
|
| 1674 |
+
host="0.0.0.0",
|
| 1675 |
+
port=5000,
|
| 1676 |
+
threads=threads,
|
| 1677 |
+
connection_limit=100,
|
| 1678 |
+
channel_timeout=30,
|
| 1679 |
+
url_scheme='https' # Keep https for local dev if using proxy/tunnel
|
| 1680 |
+
)
|
migrate.py
CHANGED
|
@@ -103,6 +103,25 @@ def create_timeout_and_campaign_tables(cursor):
|
|
| 103 |
else:
|
| 104 |
click.echo("⏭️ Table 'user_timeout' already exists, skipping")
|
| 105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
return tables_created
|
| 107 |
|
| 108 |
|
|
@@ -129,12 +148,16 @@ def add_analytics_columns_and_tables(db_path):
|
|
| 129 |
("ip_address_partial", "VARCHAR(20)"),
|
| 130 |
("user_agent", "VARCHAR(500)"),
|
| 131 |
("generation_date", "DATETIME"),
|
| 132 |
-
("cache_hit", "BOOLEAN")
|
|
|
|
|
|
|
|
|
|
| 133 |
]
|
| 134 |
|
| 135 |
# Define the columns to add to user table
|
| 136 |
user_columns_to_add = [
|
| 137 |
-
("hf_account_created", "DATETIME")
|
|
|
|
| 138 |
]
|
| 139 |
|
| 140 |
added_columns = []
|
|
@@ -176,6 +199,15 @@ def add_analytics_columns_and_tables(db_path):
|
|
| 176 |
click.echo("🔒 Creating security and timeout management tables...")
|
| 177 |
tables_created = create_timeout_and_campaign_tables(cursor)
|
| 178 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
# Commit the changes
|
| 180 |
conn.commit()
|
| 181 |
conn.close()
|
|
@@ -206,10 +238,17 @@ def add_analytics_columns_and_tables(db_path):
|
|
| 206 |
click.echo("\n🚨 New Security Features Enabled:")
|
| 207 |
click.echo(" • Automatic coordinated voting campaign detection")
|
| 208 |
click.echo(" • User timeout management")
|
|
|
|
|
|
|
|
|
|
| 209 |
click.echo(" • Admin panels for security monitoring")
|
| 210 |
click.echo("\nNew admin panel sections:")
|
| 211 |
click.echo(" • /admin/timeouts - Manage user timeouts")
|
| 212 |
click.echo(" • /admin/campaigns - View coordinated voting campaigns")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
|
| 214 |
return True
|
| 215 |
|
|
@@ -229,11 +268,18 @@ def migrate(database_path, dry_run, backup):
|
|
| 229 |
"""
|
| 230 |
Add analytics columns and security tables to the TTS Arena database.
|
| 231 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
DATABASE_PATH: Path to the SQLite database file (e.g., instance/tts_arena.db)
|
| 233 |
"""
|
| 234 |
click.echo("🚀 TTS Arena Migration Tool")
|
| 235 |
-
click.echo("Analytics + Security
|
| 236 |
-
click.echo("=" *
|
| 237 |
|
| 238 |
# Resolve the database path
|
| 239 |
db_path = Path(database_path).resolve()
|
|
@@ -262,12 +308,20 @@ def migrate(database_path, dry_run, backup):
|
|
| 262 |
click.echo(" • user_agent (VARCHAR(500))")
|
| 263 |
click.echo(" • generation_date (DATETIME)")
|
| 264 |
click.echo(" • cache_hit (BOOLEAN)")
|
|
|
|
|
|
|
|
|
|
| 265 |
click.echo("\nThe following columns would be added to the 'user' table:")
|
| 266 |
click.echo(" • hf_account_created (DATETIME)")
|
|
|
|
| 267 |
click.echo("\nThe following security tables would be created:")
|
| 268 |
click.echo(" • coordinated_voting_campaign - Track detected voting campaigns")
|
| 269 |
click.echo(" • campaign_participant - Track users involved in campaigns")
|
| 270 |
click.echo(" • user_timeout - Manage user timeouts/bans")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 271 |
click.echo("\nRun without --dry-run to apply changes.")
|
| 272 |
return
|
| 273 |
|
|
|
|
| 103 |
else:
|
| 104 |
click.echo("⏭️ Table 'user_timeout' already exists, skipping")
|
| 105 |
|
| 106 |
+
# Create consumed_sentence table
|
| 107 |
+
if not check_table_exists(cursor, "consumed_sentence"):
|
| 108 |
+
cursor.execute("""
|
| 109 |
+
CREATE TABLE consumed_sentence (
|
| 110 |
+
id INTEGER PRIMARY KEY,
|
| 111 |
+
sentence_hash VARCHAR(64) UNIQUE NOT NULL,
|
| 112 |
+
sentence_text TEXT NOT NULL,
|
| 113 |
+
consumed_at DATETIME DEFAULT CURRENT_TIMESTAMP,
|
| 114 |
+
session_id VARCHAR(100),
|
| 115 |
+
usage_type VARCHAR(20) NOT NULL
|
| 116 |
+
)
|
| 117 |
+
""")
|
| 118 |
+
# Create index on sentence_hash for performance
|
| 119 |
+
cursor.execute("CREATE INDEX IF NOT EXISTS ix_consumed_sentence_sentence_hash ON consumed_sentence (sentence_hash)")
|
| 120 |
+
tables_created.append("consumed_sentence")
|
| 121 |
+
click.echo("✅ Created table 'consumed_sentence' with index")
|
| 122 |
+
else:
|
| 123 |
+
click.echo("⏭️ Table 'consumed_sentence' already exists, skipping")
|
| 124 |
+
|
| 125 |
return tables_created
|
| 126 |
|
| 127 |
|
|
|
|
| 148 |
("ip_address_partial", "VARCHAR(20)"),
|
| 149 |
("user_agent", "VARCHAR(500)"),
|
| 150 |
("generation_date", "DATETIME"),
|
| 151 |
+
("cache_hit", "BOOLEAN"),
|
| 152 |
+
("sentence_hash", "VARCHAR(64)"),
|
| 153 |
+
("sentence_origin", "VARCHAR(20)"),
|
| 154 |
+
("counts_for_public_leaderboard", "BOOLEAN DEFAULT 1")
|
| 155 |
]
|
| 156 |
|
| 157 |
# Define the columns to add to user table
|
| 158 |
user_columns_to_add = [
|
| 159 |
+
("hf_account_created", "DATETIME"),
|
| 160 |
+
("show_in_leaderboard", "BOOLEAN DEFAULT 1")
|
| 161 |
]
|
| 162 |
|
| 163 |
added_columns = []
|
|
|
|
| 199 |
click.echo("🔒 Creating security and timeout management tables...")
|
| 200 |
tables_created = create_timeout_and_campaign_tables(cursor)
|
| 201 |
|
| 202 |
+
# Create indexes for new columns
|
| 203 |
+
click.echo("📊 Creating indexes for performance...")
|
| 204 |
+
try:
|
| 205 |
+
# Index on vote.sentence_hash for origin tracking queries
|
| 206 |
+
cursor.execute("CREATE INDEX IF NOT EXISTS ix_vote_sentence_hash ON vote (sentence_hash)")
|
| 207 |
+
click.echo("✅ Created index on vote.sentence_hash")
|
| 208 |
+
except sqlite3.Error as e:
|
| 209 |
+
click.echo(f"⚠️ Note: Could not create vote.sentence_hash index: {e}")
|
| 210 |
+
|
| 211 |
# Commit the changes
|
| 212 |
conn.commit()
|
| 213 |
conn.close()
|
|
|
|
| 238 |
click.echo("\n🚨 New Security Features Enabled:")
|
| 239 |
click.echo(" • Automatic coordinated voting campaign detection")
|
| 240 |
click.echo(" • User timeout management")
|
| 241 |
+
click.echo(" • Sentence consumption tracking (no reuse)")
|
| 242 |
+
click.echo(" • Vote origin tracking (dataset vs custom)")
|
| 243 |
+
click.echo(" • Public leaderboard integrity protection")
|
| 244 |
click.echo(" • Admin panels for security monitoring")
|
| 245 |
click.echo("\nNew admin panel sections:")
|
| 246 |
click.echo(" • /admin/timeouts - Manage user timeouts")
|
| 247 |
click.echo(" • /admin/campaigns - View coordinated voting campaigns")
|
| 248 |
+
click.echo("\nLeaderboard Changes:")
|
| 249 |
+
click.echo(" • Public leaderboard: Only unconsumed dataset sentences count")
|
| 250 |
+
click.echo(" • Personal leaderboard: All votes (dataset + custom) included")
|
| 251 |
+
click.echo(" • Each sentence can only be used once for public rankings")
|
| 252 |
|
| 253 |
return True
|
| 254 |
|
|
|
|
| 268 |
"""
|
| 269 |
Add analytics columns and security tables to the TTS Arena database.
|
| 270 |
|
| 271 |
+
This migration adds:
|
| 272 |
+
- Vote analytics (session duration, IP, user agent, etc.)
|
| 273 |
+
- Sentence origin tracking (dataset vs custom)
|
| 274 |
+
- Sentence consumption tracking (prevent reuse)
|
| 275 |
+
- Security features (coordinated voting detection, user timeouts)
|
| 276 |
+
- Leaderboard integrity protection
|
| 277 |
+
|
| 278 |
DATABASE_PATH: Path to the SQLite database file (e.g., instance/tts_arena.db)
|
| 279 |
"""
|
| 280 |
click.echo("🚀 TTS Arena Migration Tool")
|
| 281 |
+
click.echo("Analytics + Security + Vote Origin Tracking")
|
| 282 |
+
click.echo("=" * 50)
|
| 283 |
|
| 284 |
# Resolve the database path
|
| 285 |
db_path = Path(database_path).resolve()
|
|
|
|
| 308 |
click.echo(" • user_agent (VARCHAR(500))")
|
| 309 |
click.echo(" • generation_date (DATETIME)")
|
| 310 |
click.echo(" • cache_hit (BOOLEAN)")
|
| 311 |
+
click.echo(" • sentence_hash (VARCHAR(64))")
|
| 312 |
+
click.echo(" • sentence_origin (VARCHAR(20))")
|
| 313 |
+
click.echo(" • counts_for_public_leaderboard (BOOLEAN DEFAULT 1)")
|
| 314 |
click.echo("\nThe following columns would be added to the 'user' table:")
|
| 315 |
click.echo(" • hf_account_created (DATETIME)")
|
| 316 |
+
click.echo(" • show_in_leaderboard (BOOLEAN DEFAULT 1)")
|
| 317 |
click.echo("\nThe following security tables would be created:")
|
| 318 |
click.echo(" • coordinated_voting_campaign - Track detected voting campaigns")
|
| 319 |
click.echo(" • campaign_participant - Track users involved in campaigns")
|
| 320 |
click.echo(" • user_timeout - Manage user timeouts/bans")
|
| 321 |
+
click.echo(" • consumed_sentence - Track sentence usage for security")
|
| 322 |
+
click.echo("\nIndexes would be created:")
|
| 323 |
+
click.echo(" • ix_vote_sentence_hash - For vote origin tracking")
|
| 324 |
+
click.echo(" • ix_consumed_sentence_sentence_hash - For sentence consumption queries")
|
| 325 |
click.echo("\nRun without --dry-run to apply changes.")
|
| 326 |
return
|
| 327 |
|
migrate_consumed_sentences.py
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Migration script to add ConsumedSentence table for tracking used sentences.
|
| 4 |
+
Run this script once to update existing databases.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
import sys
|
| 9 |
+
from flask import Flask
|
| 10 |
+
from models import db, ConsumedSentence
|
| 11 |
+
|
| 12 |
+
def create_app():
|
| 13 |
+
app = Flask(__name__)
|
| 14 |
+
app.config["SQLALCHEMY_DATABASE_URI"] = os.getenv(
|
| 15 |
+
"DATABASE_URI", "sqlite:///tts_arena.db"
|
| 16 |
+
)
|
| 17 |
+
app.config["SQLALCHEMY_TRACK_MODIFICATIONS"] = False
|
| 18 |
+
|
| 19 |
+
db.init_app(app)
|
| 20 |
+
return app
|
| 21 |
+
|
| 22 |
+
def migrate():
|
| 23 |
+
app = create_app()
|
| 24 |
+
|
| 25 |
+
with app.app_context():
|
| 26 |
+
try:
|
| 27 |
+
# Create the ConsumedSentence table
|
| 28 |
+
db.create_all()
|
| 29 |
+
print("✅ Successfully created ConsumedSentence table")
|
| 30 |
+
|
| 31 |
+
# Check if table was created
|
| 32 |
+
inspector = db.inspect(db.engine)
|
| 33 |
+
tables = inspector.get_table_names()
|
| 34 |
+
|
| 35 |
+
if 'consumed_sentence' in tables:
|
| 36 |
+
print("✅ ConsumedSentence table confirmed in database")
|
| 37 |
+
else:
|
| 38 |
+
print("❌ ConsumedSentence table not found after creation")
|
| 39 |
+
|
| 40 |
+
except Exception as e:
|
| 41 |
+
print(f"❌ Error during migration: {e}")
|
| 42 |
+
return False
|
| 43 |
+
|
| 44 |
+
return True
|
| 45 |
+
|
| 46 |
+
if __name__ == "__main__":
|
| 47 |
+
print("Running ConsumedSentence table migration...")
|
| 48 |
+
if migrate():
|
| 49 |
+
print("Migration completed successfully!")
|
| 50 |
+
else:
|
| 51 |
+
print("Migration failed!")
|
| 52 |
+
sys.exit(1)
|
models.py
CHANGED
|
@@ -4,6 +4,7 @@ from datetime import datetime, timedelta
|
|
| 4 |
import math
|
| 5 |
from sqlalchemy import func, text
|
| 6 |
import logging
|
|
|
|
| 7 |
|
| 8 |
db = SQLAlchemy()
|
| 9 |
|
|
@@ -72,6 +73,11 @@ class Vote(db.Model):
|
|
| 72 |
user_agent = db.Column(db.String(500), nullable=True) # Browser/device info
|
| 73 |
generation_date = db.Column(db.DateTime, nullable=True) # When audio was generated
|
| 74 |
cache_hit = db.Column(db.Boolean, nullable=True) # Whether generation was from cache
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
chosen = db.relationship(
|
| 77 |
"Model",
|
|
@@ -174,6 +180,19 @@ class UserTimeout(db.Model):
|
|
| 174 |
return f"<UserTimeout {self.user_id}: {self.timeout_type} until {self.expires_at}>"
|
| 175 |
|
| 176 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
def calculate_elo_change(winner_elo, loser_elo, k_factor=32):
|
| 178 |
"""Calculate Elo rating changes for a match."""
|
| 179 |
expected_winner = 1 / (1 + math.pow(10, (loser_elo - winner_elo) / 400))
|
|
@@ -214,8 +233,23 @@ def anonymize_ip_address(ip_address):
|
|
| 214 |
|
| 215 |
def record_vote(user_id, text, chosen_model_id, rejected_model_id, model_type,
|
| 216 |
session_duration=None, ip_address=None, user_agent=None,
|
| 217 |
-
generation_date=None, cache_hit=None):
|
| 218 |
"""Record a vote and update Elo ratings."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
# Create the vote
|
| 220 |
vote = Vote(
|
| 221 |
user_id=user_id, # Required - user must be logged in to vote
|
|
@@ -228,6 +262,9 @@ def record_vote(user_id, text, chosen_model_id, rejected_model_id, model_type,
|
|
| 228 |
user_agent=user_agent[:500] if user_agent else None, # Truncate if too long
|
| 229 |
generation_date=generation_date,
|
| 230 |
cache_hit=cache_hit,
|
|
|
|
|
|
|
|
|
|
| 231 |
)
|
| 232 |
db.session.add(vote)
|
| 233 |
db.session.flush() # Get the vote ID without committing
|
|
@@ -244,18 +281,24 @@ def record_vote(user_id, text, chosen_model_id, rejected_model_id, model_type,
|
|
| 244 |
db.session.rollback()
|
| 245 |
return None, "One or both models not found for the specified model type"
|
| 246 |
|
| 247 |
-
#
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
|
|
|
|
|
|
| 251 |
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
|
| 257 |
-
|
| 258 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 259 |
|
| 260 |
# Record Elo history
|
| 261 |
chosen_history = EloHistory(
|
|
@@ -281,6 +324,7 @@ def record_vote(user_id, text, chosen_model_id, rejected_model_id, model_type,
|
|
| 281 |
def get_leaderboard_data(model_type):
|
| 282 |
"""
|
| 283 |
Get leaderboard data for the specified model type.
|
|
|
|
| 284 |
|
| 285 |
Args:
|
| 286 |
model_type (str): The model type ('tts' or 'conversational')
|
|
@@ -291,6 +335,7 @@ def get_leaderboard_data(model_type):
|
|
| 291 |
query = Model.query.filter_by(model_type=model_type)
|
| 292 |
|
| 293 |
# Get models with >1k votes ordered by ELO score
|
|
|
|
| 294 |
models = query.filter(Model.match_count > 1000).order_by(Model.current_elo.desc()).all()
|
| 295 |
|
| 296 |
result = []
|
|
@@ -325,6 +370,7 @@ def get_leaderboard_data(model_type):
|
|
| 325 |
def get_user_leaderboard(user_id, model_type):
|
| 326 |
"""
|
| 327 |
Get personalized leaderboard data for a specific user.
|
|
|
|
| 328 |
|
| 329 |
Args:
|
| 330 |
user_id (int): The user ID
|
|
@@ -336,7 +382,7 @@ def get_user_leaderboard(user_id, model_type):
|
|
| 336 |
# Get all models of the specified type
|
| 337 |
models = Model.query.filter_by(model_type=model_type).all()
|
| 338 |
|
| 339 |
-
# Get user's votes
|
| 340 |
user_votes = Vote.query.filter_by(user_id=user_id, model_type=model_type).all()
|
| 341 |
|
| 342 |
# Calculate win counts and match counts for each model based on user's votes
|
|
@@ -415,17 +461,19 @@ def get_historical_leaderboard_data(model_type, target_date=None):
|
|
| 415 |
if not elo_entry:
|
| 416 |
continue
|
| 417 |
|
| 418 |
-
# Count wins and matches up to the target date
|
| 419 |
match_count = Vote.query.filter(
|
| 420 |
db.or_(Vote.model_chosen == model.id, Vote.model_rejected == model.id),
|
| 421 |
Vote.model_type == model_type,
|
| 422 |
Vote.vote_date <= target_date,
|
|
|
|
| 423 |
).count()
|
| 424 |
|
| 425 |
win_count = Vote.query.filter(
|
| 426 |
Vote.model_chosen == model.id,
|
| 427 |
Vote.model_type == model_type,
|
| 428 |
Vote.vote_date <= target_date,
|
|
|
|
| 429 |
).count()
|
| 430 |
|
| 431 |
# Calculate win rate
|
|
@@ -823,3 +871,69 @@ def resolve_campaign(campaign_id, resolved_by, status, admin_notes=None):
|
|
| 823 |
|
| 824 |
db.session.commit()
|
| 825 |
return True, "Campaign resolved successfully"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
import math
|
| 5 |
from sqlalchemy import func, text
|
| 6 |
import logging
|
| 7 |
+
import hashlib
|
| 8 |
|
| 9 |
db = SQLAlchemy()
|
| 10 |
|
|
|
|
| 73 |
user_agent = db.Column(db.String(500), nullable=True) # Browser/device info
|
| 74 |
generation_date = db.Column(db.DateTime, nullable=True) # When audio was generated
|
| 75 |
cache_hit = db.Column(db.Boolean, nullable=True) # Whether generation was from cache
|
| 76 |
+
|
| 77 |
+
# Sentence origin tracking
|
| 78 |
+
sentence_hash = db.Column(db.String(64), nullable=True, index=True) # SHA-256 hash of the sentence
|
| 79 |
+
sentence_origin = db.Column(db.String(20), nullable=True) # 'dataset', 'custom', 'unknown'
|
| 80 |
+
counts_for_public_leaderboard = db.Column(db.Boolean, default=True) # Whether this vote counts for public leaderboard
|
| 81 |
|
| 82 |
chosen = db.relationship(
|
| 83 |
"Model",
|
|
|
|
| 180 |
return f"<UserTimeout {self.user_id}: {self.timeout_type} until {self.expires_at}>"
|
| 181 |
|
| 182 |
|
| 183 |
+
class ConsumedSentence(db.Model):
|
| 184 |
+
"""Track sentences that have been used to ensure each sentence is only used once"""
|
| 185 |
+
id = db.Column(db.Integer, primary_key=True)
|
| 186 |
+
sentence_hash = db.Column(db.String(64), unique=True, nullable=False, index=True) # SHA-256 hash
|
| 187 |
+
sentence_text = db.Column(db.Text, nullable=False) # Store original text for debugging/admin purposes
|
| 188 |
+
consumed_at = db.Column(db.DateTime, default=datetime.utcnow)
|
| 189 |
+
session_id = db.Column(db.String(100), nullable=True) # Track which session consumed it
|
| 190 |
+
usage_type = db.Column(db.String(20), nullable=False) # 'cache', 'direct', 'random'
|
| 191 |
+
|
| 192 |
+
def __repr__(self):
|
| 193 |
+
return f"<ConsumedSentence {self.sentence_hash[:8]}...({self.usage_type})>"
|
| 194 |
+
|
| 195 |
+
|
| 196 |
def calculate_elo_change(winner_elo, loser_elo, k_factor=32):
|
| 197 |
"""Calculate Elo rating changes for a match."""
|
| 198 |
expected_winner = 1 / (1 + math.pow(10, (loser_elo - winner_elo) / 400))
|
|
|
|
| 233 |
|
| 234 |
def record_vote(user_id, text, chosen_model_id, rejected_model_id, model_type,
|
| 235 |
session_duration=None, ip_address=None, user_agent=None,
|
| 236 |
+
generation_date=None, cache_hit=None, all_dataset_sentences=None):
|
| 237 |
"""Record a vote and update Elo ratings."""
|
| 238 |
+
|
| 239 |
+
# Determine sentence origin and whether it should count for public leaderboard
|
| 240 |
+
sentence_hash = hash_sentence(text)
|
| 241 |
+
sentence_origin = 'unknown'
|
| 242 |
+
counts_for_public = True
|
| 243 |
+
|
| 244 |
+
if all_dataset_sentences and text in all_dataset_sentences:
|
| 245 |
+
sentence_origin = 'dataset'
|
| 246 |
+
# Only count for public leaderboard if sentence was unconsumed when used
|
| 247 |
+
# Check if it was consumed BEFORE this vote (don't consume yet)
|
| 248 |
+
counts_for_public = not is_sentence_consumed(text)
|
| 249 |
+
else:
|
| 250 |
+
sentence_origin = 'custom'
|
| 251 |
+
counts_for_public = False # Custom sentences never count for public leaderboard
|
| 252 |
+
|
| 253 |
# Create the vote
|
| 254 |
vote = Vote(
|
| 255 |
user_id=user_id, # Required - user must be logged in to vote
|
|
|
|
| 262 |
user_agent=user_agent[:500] if user_agent else None, # Truncate if too long
|
| 263 |
generation_date=generation_date,
|
| 264 |
cache_hit=cache_hit,
|
| 265 |
+
sentence_hash=sentence_hash,
|
| 266 |
+
sentence_origin=sentence_origin,
|
| 267 |
+
counts_for_public_leaderboard=counts_for_public,
|
| 268 |
)
|
| 269 |
db.session.add(vote)
|
| 270 |
db.session.flush() # Get the vote ID without committing
|
|
|
|
| 281 |
db.session.rollback()
|
| 282 |
return None, "One or both models not found for the specified model type"
|
| 283 |
|
| 284 |
+
# Only update Elo ratings and public stats if this vote counts for public leaderboard
|
| 285 |
+
if counts_for_public:
|
| 286 |
+
# Calculate new Elo ratings
|
| 287 |
+
new_chosen_elo, new_rejected_elo = calculate_elo_change(
|
| 288 |
+
chosen_model.current_elo, rejected_model.current_elo
|
| 289 |
+
)
|
| 290 |
|
| 291 |
+
# Update model stats
|
| 292 |
+
chosen_model.current_elo = new_chosen_elo
|
| 293 |
+
chosen_model.win_count += 1
|
| 294 |
+
chosen_model.match_count += 1
|
| 295 |
|
| 296 |
+
rejected_model.current_elo = new_rejected_elo
|
| 297 |
+
rejected_model.match_count += 1
|
| 298 |
+
else:
|
| 299 |
+
# For votes that don't count for public leaderboard, keep current Elo
|
| 300 |
+
new_chosen_elo = chosen_model.current_elo
|
| 301 |
+
new_rejected_elo = rejected_model.current_elo
|
| 302 |
|
| 303 |
# Record Elo history
|
| 304 |
chosen_history = EloHistory(
|
|
|
|
| 324 |
def get_leaderboard_data(model_type):
|
| 325 |
"""
|
| 326 |
Get leaderboard data for the specified model type.
|
| 327 |
+
Only includes votes that count for the public leaderboard.
|
| 328 |
|
| 329 |
Args:
|
| 330 |
model_type (str): The model type ('tts' or 'conversational')
|
|
|
|
| 335 |
query = Model.query.filter_by(model_type=model_type)
|
| 336 |
|
| 337 |
# Get models with >1k votes ordered by ELO score
|
| 338 |
+
# Note: Model.match_count now only includes votes that count for public leaderboard
|
| 339 |
models = query.filter(Model.match_count > 1000).order_by(Model.current_elo.desc()).all()
|
| 340 |
|
| 341 |
result = []
|
|
|
|
| 370 |
def get_user_leaderboard(user_id, model_type):
|
| 371 |
"""
|
| 372 |
Get personalized leaderboard data for a specific user.
|
| 373 |
+
Includes ALL votes (both dataset and custom sentences).
|
| 374 |
|
| 375 |
Args:
|
| 376 |
user_id (int): The user ID
|
|
|
|
| 382 |
# Get all models of the specified type
|
| 383 |
models = Model.query.filter_by(model_type=model_type).all()
|
| 384 |
|
| 385 |
+
# Get user's votes (includes both public and custom sentence votes)
|
| 386 |
user_votes = Vote.query.filter_by(user_id=user_id, model_type=model_type).all()
|
| 387 |
|
| 388 |
# Calculate win counts and match counts for each model based on user's votes
|
|
|
|
| 461 |
if not elo_entry:
|
| 462 |
continue
|
| 463 |
|
| 464 |
+
# Count wins and matches up to the target date (only public leaderboard votes)
|
| 465 |
match_count = Vote.query.filter(
|
| 466 |
db.or_(Vote.model_chosen == model.id, Vote.model_rejected == model.id),
|
| 467 |
Vote.model_type == model_type,
|
| 468 |
Vote.vote_date <= target_date,
|
| 469 |
+
Vote.counts_for_public_leaderboard == True,
|
| 470 |
).count()
|
| 471 |
|
| 472 |
win_count = Vote.query.filter(
|
| 473 |
Vote.model_chosen == model.id,
|
| 474 |
Vote.model_type == model_type,
|
| 475 |
Vote.vote_date <= target_date,
|
| 476 |
+
Vote.counts_for_public_leaderboard == True,
|
| 477 |
).count()
|
| 478 |
|
| 479 |
# Calculate win rate
|
|
|
|
| 871 |
|
| 872 |
db.session.commit()
|
| 873 |
return True, "Campaign resolved successfully"
|
| 874 |
+
|
| 875 |
+
|
| 876 |
+
def hash_sentence(sentence_text):
|
| 877 |
+
"""Generate a SHA-256 hash for a sentence"""
|
| 878 |
+
return hashlib.sha256(sentence_text.strip().encode('utf-8')).hexdigest()
|
| 879 |
+
|
| 880 |
+
|
| 881 |
+
def is_sentence_consumed(sentence_text):
|
| 882 |
+
"""Check if a sentence has already been consumed"""
|
| 883 |
+
sentence_hash = hash_sentence(sentence_text)
|
| 884 |
+
return ConsumedSentence.query.filter_by(sentence_hash=sentence_hash).first() is not None
|
| 885 |
+
|
| 886 |
+
|
| 887 |
+
def mark_sentence_consumed(sentence_text, session_id=None, usage_type='direct'):
|
| 888 |
+
"""Mark a sentence as consumed"""
|
| 889 |
+
sentence_hash = hash_sentence(sentence_text)
|
| 890 |
+
|
| 891 |
+
# Check if already consumed
|
| 892 |
+
existing = ConsumedSentence.query.filter_by(sentence_hash=sentence_hash).first()
|
| 893 |
+
if existing:
|
| 894 |
+
return existing # Already consumed
|
| 895 |
+
|
| 896 |
+
consumed_sentence = ConsumedSentence(
|
| 897 |
+
sentence_hash=sentence_hash,
|
| 898 |
+
sentence_text=sentence_text,
|
| 899 |
+
session_id=session_id,
|
| 900 |
+
usage_type=usage_type
|
| 901 |
+
)
|
| 902 |
+
|
| 903 |
+
db.session.add(consumed_sentence)
|
| 904 |
+
db.session.commit()
|
| 905 |
+
return consumed_sentence
|
| 906 |
+
|
| 907 |
+
|
| 908 |
+
def get_unconsumed_sentences(sentence_pool):
|
| 909 |
+
"""Filter a list of sentences to only include unconsumed ones"""
|
| 910 |
+
if not sentence_pool:
|
| 911 |
+
return []
|
| 912 |
+
|
| 913 |
+
# Get all consumed sentence hashes
|
| 914 |
+
consumed_hashes = set(
|
| 915 |
+
row[0] for row in db.session.query(ConsumedSentence.sentence_hash).all()
|
| 916 |
+
)
|
| 917 |
+
|
| 918 |
+
# Filter out consumed sentences
|
| 919 |
+
unconsumed = []
|
| 920 |
+
for sentence in sentence_pool:
|
| 921 |
+
if hash_sentence(sentence) not in consumed_hashes:
|
| 922 |
+
unconsumed.append(sentence)
|
| 923 |
+
|
| 924 |
+
return unconsumed
|
| 925 |
+
|
| 926 |
+
|
| 927 |
+
def get_consumed_sentences_count():
|
| 928 |
+
"""Get the total count of consumed sentences"""
|
| 929 |
+
return ConsumedSentence.query.count()
|
| 930 |
+
|
| 931 |
+
|
| 932 |
+
def get_random_unconsumed_sentence(sentence_pool):
|
| 933 |
+
"""Get a random unconsumed sentence from the pool"""
|
| 934 |
+
unconsumed = get_unconsumed_sentences(sentence_pool)
|
| 935 |
+
if not unconsumed:
|
| 936 |
+
return None
|
| 937 |
+
|
| 938 |
+
import random
|
| 939 |
+
return random.choice(unconsumed)
|
requirements.txt
CHANGED
|
@@ -11,4 +11,5 @@ flask-migrate
|
|
| 11 |
gunicorn
|
| 12 |
waitress
|
| 13 |
fal-client
|
| 14 |
-
git+https://github.com/playht/pyht
|
|
|
|
|
|
| 11 |
gunicorn
|
| 12 |
waitress
|
| 13 |
fal-client
|
| 14 |
+
git+https://github.com/playht/pyht
|
| 15 |
+
datasets
|
templates/arena.html
CHANGED
|
@@ -1467,19 +1467,14 @@
|
|
| 1467 |
function handleRandom() {
|
| 1468 |
let selectedText = '';
|
| 1469 |
if (cachedSentences && cachedSentences.length > 0) {
|
| 1470 |
-
// Select a random text from the
|
| 1471 |
selectedText = cachedSentences[Math.floor(Math.random() * cachedSentences.length)];
|
| 1472 |
-
console.log("Using random sentence from
|
| 1473 |
} else {
|
| 1474 |
-
//
|
| 1475 |
-
console.
|
| 1476 |
-
|
| 1477 |
-
|
| 1478 |
-
} else {
|
| 1479 |
-
// If fallback list is also empty, do nothing. Log an error.
|
| 1480 |
-
console.error("Both cached sentences and fallback sentences are unavailable.");
|
| 1481 |
-
return;
|
| 1482 |
-
}
|
| 1483 |
}
|
| 1484 |
textInput.value = selectedText;
|
| 1485 |
textInput.focus();
|
|
|
|
| 1467 |
function handleRandom() {
|
| 1468 |
let selectedText = '';
|
| 1469 |
if (cachedSentences && cachedSentences.length > 0) {
|
| 1470 |
+
// Select a random text from the unconsumed sentences
|
| 1471 |
selectedText = cachedSentences[Math.floor(Math.random() * cachedSentences.length)];
|
| 1472 |
+
console.log("Using random sentence from unconsumed sentences.");
|
| 1473 |
} else {
|
| 1474 |
+
// No fallback to consumed sentences for security reasons
|
| 1475 |
+
console.error("No unconsumed sentences available. All sentences may have been used.");
|
| 1476 |
+
openToast("No unused sentences available. All sentences from the dataset may have been consumed.", "error");
|
| 1477 |
+
return;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1478 |
}
|
| 1479 |
textInput.value = selectedText;
|
| 1480 |
textInput.focus();
|
tts.py
CHANGED
|
@@ -165,7 +165,6 @@ def predict_dia(script):
|
|
| 165 |
else:
|
| 166 |
# If it's already a string, use as is
|
| 167 |
text = script
|
| 168 |
-
print(text)
|
| 169 |
# Make a POST request to initiate the dialogue generation
|
| 170 |
headers = {
|
| 171 |
# "Content-Type": "application/json",
|
|
@@ -219,7 +218,6 @@ def predict_tts(text, model):
|
|
| 219 |
}
|
| 220 |
),
|
| 221 |
)
|
| 222 |
-
|
| 223 |
response_json = result.json()
|
| 224 |
|
| 225 |
audio_data = response_json["audio_data"] # base64 encoded audio data
|
|
|
|
| 165 |
else:
|
| 166 |
# If it's already a string, use as is
|
| 167 |
text = script
|
|
|
|
| 168 |
# Make a POST request to initiate the dialogue generation
|
| 169 |
headers = {
|
| 170 |
# "Content-Type": "application/json",
|
|
|
|
| 218 |
}
|
| 219 |
),
|
| 220 |
)
|
|
|
|
| 221 |
response_json = result.json()
|
| 222 |
|
| 223 |
audio_data = response_json["audio_data"] # base64 encoded audio data
|