TVRRaviteja commited on
Commit
8b1a242
·
verified ·
1 Parent(s): 04342d4

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +85 -0
app.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr # type: ignore
2
+ from utils import generate_audio_response, generate_text_response, set_user_response, transcribe_audio, personality_app, create_line_plot, predict_personality
3
+ from huggingface_hub import login # type: ignore
4
+ import os
5
+
6
+ # Function to handle audio input and update chatbot
7
+ def handle_audio_input(audio_file_path, chat_history):
8
+ if audio_file_path is not None:
9
+ # Transcribe the audio
10
+ output = transcribe_audio(audio_file_path)
11
+ personality_scores=personality_app(output)
12
+ # Update the chat history with the transcription
13
+ _, chat_history = set_user_response(output, chat_history)
14
+ return output, chat_history, personality_scores
15
+ return None, chat_history, None
16
+
17
+ def clear_audio():
18
+ return None
19
+
20
+ def hide_textbox():
21
+ return gr.Textbox(visible=False)
22
+
23
+ def open_textbox():
24
+ return gr.Textbox(visible=True)
25
+
26
+ # Function to handle the model selection
27
+ def update_selected_model(selected_model):
28
+ print(f"Selected model: {selected_model}")
29
+ return selected_model
30
+
31
+ with gr.Blocks() as demo:
32
+ gr.Markdown("<center><h1>Multimodal Personality Adaptive Conversational AI</h1></center>")
33
+ gr.Markdown("<center><h5>Personality Adaptive AI This application uses LLMs to create a personality adaptive conversational AI that interacts with users and displays personality scores. (Description with links goes here)</h5></center>")
34
+ with gr.Row():
35
+ with gr.Column(scale=6):
36
+ # Audio recording component
37
+ audio_input = gr.Microphone(sources=["microphone"], type="filepath", label="Tell Me How You're Feeling", container=True, interactive=True)
38
+ output_text = gr.Textbox(label="Transcription", placeholder="What you said appears here..")
39
+ chatbot = gr.Chatbot(label="Carebot", height=450) #Chatbot interface
40
+ msg = gr.Textbox(label="Type your message here:") # Textbox for user input
41
+
42
+ # with gr.Group():
43
+ with gr.Row():
44
+ Run = gr.Button("Run",variant="primary", size="sm")
45
+ clear = gr.ClearButton(size="sm") #To clear the chat
46
+ # generate = gr.Button("Generate", size="sm")
47
+ # save_chat = gr.Button("Save", size="sm")
48
+
49
+ # Display some query examples
50
+ examples = gr.Examples(examples=["I'm feeling Sad all the time", "Tell me a joke.", "Cheer Me Up!", "Tell me about Seattle"], inputs=msg)
51
+ #Clear the message
52
+ clear.click(lambda: None, None, chatbot, queue=False)
53
+
54
+ # Right side - Information, Visualization, and Dropdown
55
+ with gr.Column(scale=4):
56
+ # 1st component - Dropdown to choose models
57
+ model_selection = gr.Dropdown(
58
+ ["Llama-2-7b-chat-Counsel-finetuned", "Llama-3-8B", "gpt-4", "gpt-3.5-turbo"], label="Models", info="Choose your LLM model", value="Llama-2-7b-chat-Counsel-finetuned")
59
+
60
+ # Textbox to display the selected model
61
+ selected_model = gr.Textbox(label="Selected Model", interactive=False, visible=False) # not displayed in the app
62
+
63
+ model_selection.change(fn=update_selected_model, inputs=model_selection, outputs=selected_model)
64
+
65
+ # 2nd component - Live Personality Score Visualization
66
+ personality_score = gr.LinePlot(x="Personality", y="Score",label="Personality Scores", height=300)
67
+
68
+ #Generate responses to the user's audio query
69
+ if audio_input is not None and output_text != None:
70
+
71
+ gr.on(audio_input.change, fn=handle_audio_input, inputs=[audio_input, chatbot], outputs=[output_text, chatbot, personality_score], queue=False).then(fn=generate_audio_response, inputs=[chatbot,selected_model], outputs=chatbot)
72
+ audio_input.change(clear_audio, inputs=None, outputs=audio_input)
73
+
74
+ pass
75
+
76
+ if msg is not None:
77
+ # Submit the response to LLM
78
+ gr.on(triggers=[msg.submit, Run.click],fn=personality_app, inputs=msg, outputs=personality_score).then(fn=set_user_response, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False).then(fn=generate_text_response, inputs=[chatbot, selected_model], outputs=chatbot)
79
+
80
+ # Launch the Gradio app
81
+ demo.queue()
82
+
83
+ if __name__ == '__main__':
84
+ login(token = os.getenv("HF_TOKEN")) # HF Login
85
+ demo.launch()