import gradio as gr # type: ignore from utils import generate_audio_response, generate_text_response, set_user_response, transcribe_audio, personality_app, create_line_plot, predict_personality from huggingface_hub import login # type: ignore import os # Function to handle audio input and update chatbot def handle_audio_input(audio_file_path, chat_history): if audio_file_path is not None: # Transcribe the audio output = transcribe_audio(audio_file_path) personality_scores=personality_app(output) # Update the chat history with the transcription _, chat_history = set_user_response(output, chat_history) return output, chat_history, personality_scores return None, chat_history, None def clear_audio(): return None def hide_textbox(): return gr.Textbox(visible=False) def open_textbox(): return gr.Textbox(visible=True) # Function to handle the model selection def update_selected_model(selected_model): print(f"Selected model: {selected_model}") return selected_model with gr.Blocks() as demo: gr.Markdown("

Multimodal Personality Adaptive Conversational AI

") gr.Markdown("
Personality Adaptive AI This application uses LLMs to create a personality adaptive conversational AI that interacts with users and displays personality scores. (Description with links goes here)
") with gr.Row(): with gr.Column(scale=6): # Audio recording component audio_input = gr.Microphone(sources=["microphone"], type="filepath", label="Tell Me How You're Feeling", container=True, interactive=True) output_text = gr.Textbox(label="Transcription", placeholder="What you said appears here..") chatbot = gr.Chatbot(label="Carebot", height=450) #Chatbot interface msg = gr.Textbox(label="Type your message here:") # Textbox for user input # with gr.Group(): with gr.Row(): Run = gr.Button("Run",variant="primary", size="sm") clear = gr.ClearButton(size="sm") #To clear the chat # generate = gr.Button("Generate", size="sm") # save_chat = gr.Button("Save", size="sm") # Display some query examples examples = gr.Examples(examples=["I'm feeling Sad all the time", "Tell me a joke.", "Cheer Me Up!", "Tell me about Seattle"], inputs=msg) #Clear the message clear.click(lambda: None, None, chatbot, queue=False) # Right side - Information, Visualization, and Dropdown with gr.Column(scale=4): # 1st component - Dropdown to choose models model_selection = gr.Dropdown( ["Llama-2-7b-chat-Counsel-finetuned", "Llama-3-8B", "gpt-4", "gpt-3.5-turbo"], label="Models", info="Choose your LLM model", value="Llama-2-7b-chat-Counsel-finetuned") # Textbox to display the selected model selected_model = gr.Textbox(label="Selected Model", interactive=False, visible=False) # not displayed in the app model_selection.change(fn=update_selected_model, inputs=model_selection, outputs=selected_model) # 2nd component - Live Personality Score Visualization personality_score = gr.LinePlot(x="Personality", y="Score",label="Personality Scores", height=300) #Generate responses to the user's audio query if audio_input is not None and output_text != None: gr.on(audio_input.change, fn=handle_audio_input, inputs=[audio_input, chatbot], outputs=[output_text, chatbot, personality_score], queue=False).then(fn=generate_audio_response, inputs=[chatbot,selected_model], outputs=chatbot) audio_input.change(clear_audio, inputs=None, outputs=audio_input) pass if msg is not None: # Submit the response to LLM gr.on(triggers=[msg.submit, Run.click],fn=personality_app, inputs=msg, outputs=personality_score).then(fn=set_user_response, inputs=[msg, chatbot], outputs=[msg, chatbot], queue=False).then(fn=generate_text_response, inputs=[chatbot, selected_model], outputs=chatbot) # Launch the Gradio app demo.queue() if __name__ == '__main__': login(token = os.getenv("HF_TOKEN")) # HF Login demo.launch()