File size: 10,461 Bytes
783b779
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
852ddf5
783b779
 
 
 
852ddf5
783b779
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import gradio as gr
import cv2
import json
import tempfile
import os
from ultralytics import YOLO
import numpy as np
from collections import defaultdict
from typing import Dict, List, Tuple, Any

class HumanTracker:
    def __init__(self):
        # Load YOLOv11 model - using the nano version for faster processing
        # You can change to yolo11s.pt, yolo11m.pt, yolo11l.pt, or yolo11x.pt for better accuracy
        self.model = YOLO("yolo11n.pt")
        
    def calculate_center(self, x1: float, y1: float, x2: float, y2: float) -> Tuple[float, float]:
        """Calculate center coordinates from bounding box coordinates."""
        center_x = (x1 + x2) / 2
        center_y = (y1 + y2) / 2
        return center_x, center_y
    
    def process_video(self, video_path: str, progress_callback=None) -> Dict[str, Any]:
        """
        Process video file and extract human tracking data.
        
        Args:
            video_path: Path to the input video file
            progress_callback: Optional callback function for progress updates
            
        Returns:
            Dictionary containing processed tracking data in the required JSON format
        """
        cap = cv2.VideoCapture(video_path)
        if not cap.isOpened():
            raise ValueError(f"Could not open video file: {video_path}")
        
        total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
        fps = cap.get(cv2.CAP_PROP_FPS)
        
        frame_data = {}
        id_mapping = {}  # Maps original YOLO IDs to simplified sequential IDs
        next_person_id = 1
        
        print(f"Processing video: {total_frames} frames at {fps} FPS")
        
        # Process video with YOLO tracking
        # Using stream=True for memory efficiency with large videos
        results = self.model.track(
            video_path, 
            classes=[0],  # Only detect humans (class 0)
            persist=True,  # Enable tracking
            stream=True,
            verbose=False
        )
        
        frame_count = 0
        for result in results:
            if progress_callback:
                progress = (frame_count + 1) / total_frames
                progress_callback(progress, f"Processing frame {frame_count + 1}/{total_frames}")
            
            # Check if any detections exist
            if result.boxes is not None and len(result.boxes) > 0:
                # Extract bounding boxes, track IDs, and confidences
                boxes = result.boxes.xyxy.cpu().numpy()  # x1, y1, x2, y2 format
                track_ids = result.boxes.id
                confidences = result.boxes.conf.cpu().numpy()
                
                if track_ids is not None:
                    track_ids = track_ids.int().cpu().numpy()
                    
                    people_in_frame = []
                    
                    for box, track_id, confidence in zip(boxes, track_ids, confidences):
                        x1, y1, x2, y2 = box
                        
                        # Map original YOLO ID to simplified sequential ID
                        if track_id not in id_mapping:
                            id_mapping[track_id] = next_person_id
                            next_person_id += 1
                        
                        person_id = id_mapping[track_id]
                        
                        # Calculate center coordinates
                        center_x, center_y = self.calculate_center(x1, y1, x2, y2)
                        
                        # Create person data
                        person_data = {
                            "person_id": person_id,
                            "center_x": float(center_x),
                            "center_y": float(center_y),
                            "confidence": float(confidence),
                            "bbox": {
                                "x1": float(x1),
                                "y1": float(y1),
                                "x2": float(x2),
                                "y2": float(y2)
                            }
                        }
                        people_in_frame.append(person_data)
                    
                    if people_in_frame:
                        # Sort people by person_id for consistency
                        people_in_frame.sort(key=lambda x: x["person_id"])
                        frame_data[frame_count] = people_in_frame
            
            frame_count += 1
        
        cap.release()
        
        # Convert to the required JSON format
        frames_list = []
        sorted_frames = sorted(frame_data.keys())
        
        for frame_num in sorted_frames:
            frames_list.append({
                "frame": frame_num,
                "people": frame_data[frame_num]
            })
        
        # Create the final output structure
        output = {
            "metadata": {
                "total_frames": len(frames_list),
                "total_people": len(id_mapping),
                "video_info": {
                    "fps": float(fps),
                    "total_video_frames": total_frames
                },
                "id_mapping": {str(original_id): simplified_id for original_id, simplified_id in id_mapping.items()}
            },
            "frames": frames_list
        }
        
        return output

def process_video_gradio(video_file, progress=gr.Progress()):
    """
    Gradio interface function for processing videos.
    
    Args:
        video_file: Uploaded video file from Gradio
        progress: Gradio progress tracker
        
    Returns:
        Tuple of (JSON file path, status message, preview of results)
    """
    if video_file is None:
        return None, "❌ Please upload a video file", "No video uploaded"
    
    try:
        # Initialize the tracker
        tracker = HumanTracker()
        
        # Create progress callback
        def update_progress(prog, msg):
            progress(prog, desc=msg)
        
        # Process the video
        progress(0.1, desc="Starting video processing...")
        results = tracker.process_video(video_file, update_progress)
        
        progress(0.9, desc="Generating JSON output...")
        
        # Create temporary JSON file
        with tempfile.NamedTemporaryFile(mode='w', suffix='.json', delete=False) as f:
            json.dump(results, f, indent=2)
            json_path = f.name
        
        # Create a preview of the results
        metadata = results["metadata"]
        total_frames = metadata["total_frames"]
        total_people = metadata["total_people"]
        
        preview = f"""
πŸ“Š **Processing Results:**
- **Total frames with detections:** {total_frames}
- **Unique people detected:** {total_people}
- **Original video frames:** {metadata.get('video_info', {}).get('total_video_frames', 'N/A')}
- **Video FPS:** {metadata.get('video_info', {}).get('fps', 'N/A'):.2f}

πŸ†” **ID Mapping:**
{json.dumps(metadata["id_mapping"], indent=2)}

πŸ“‹ **Sample Frame Data (first frame):**
{json.dumps(results["frames"][:1] if results["frames"] else [], indent=2)}
        """
        
        progress(1.0, desc="βœ… Processing complete!")
        
        return (
            json_path,
            f"βœ… Successfully processed video! Detected {total_people} unique people across {total_frames} frames.",
            preview
        )
        
    except Exception as e:
        error_msg = f"❌ Error processing video: {str(e)}"
        print(error_msg)
        return None, error_msg, f"Error details: {str(e)}"

# Create the Gradio interface
def create_interface():
    with gr.Blocks(
        title="Dynamic Veme Processor",
        theme=gr.themes.Soft()
    ) as demo:
        
        gr.Markdown("""
        # 🎯 Dynamic Veme Processor
        
        Upload a video to detect and track humans using YOLOv11. The app will:
        - πŸ” Detect humans in each frame
        - 🎯 Track individuals across frames with unique IDs
        - πŸ“ Extract bounding box coordinates and center points
        - πŸ“ Generate JSON output for text overlay positioning
        
        **Supported formats:** MP4, AVI, MOV, WEBM
        """)
        
        with gr.Row():
            with gr.Column(scale=1):
                video_input = gr.Video(
                    label="πŸ“Ή Upload Video",
                    height=400
                )
                
                process_btn = gr.Button(
                    "πŸš€ Process Video",
                    variant="primary",
                    size="lg"
                )
                
            with gr.Column(scale=1):
                json_output = gr.File(
                    label="πŸ“ Download JSON Results",
                    file_count="single"
                )
                
                status_output = gr.Textbox(
                    label="πŸ“Š Status",
                    value="Ready to process video...",
                    interactive=False
                )
        
        with gr.Row():
            preview_output = gr.Textbox(
                label="πŸ‘οΈ Results Preview",
                lines=15,
                interactive=False,
                placeholder="Results preview will appear here after processing..."
            )
        
        # Event handlers
        process_btn.click(
            fn=process_video_gradio,
            inputs=[video_input],
            outputs=[json_output, status_output, preview_output],
            show_progress=True
        )
        
        # Example section
        gr.Markdown("""
        ## πŸ“‹ Output Format
        
        The generated JSON file contains:
        - **metadata**: Video info, total people count, ID mappings
        - **frames**: Array of frame data with person detections
        
        Each person detection includes:
        - `person_id`: Unique identifier for tracking
        - `center_x`, `center_y`: Center coordinates for text overlay positioning
        - `confidence`: Detection confidence score
        - `bbox`: Full bounding box coordinates (x1, y1, x2, y2)
        """)
    
    return demo

if __name__ == "__main__":
    # Create and launch the interface
    demo = create_interface()
    demo.launch(
        server_name="0.0.0.0",  # Allow external access
        server_port=7860,
        share=False,  # Set to True if you want a public link
        show_error=True
    )