Update app.py
Browse files
app.py
CHANGED
@@ -1,83 +1,178 @@
|
|
1 |
-
import gradio as gr
|
2 |
import os
|
|
|
3 |
from pdf2image import convert_from_path
|
4 |
-
from
|
5 |
import base64
|
6 |
-
import
|
|
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
client = Anthropic(api_key=ANTHROPIC_API_KEY)
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
-
# Convert image to base64
|
25 |
img_buffer = io.BytesIO()
|
26 |
image.save(img_buffer, format='PNG')
|
27 |
img_base64 = base64.b64encode(img_buffer.getvalue()).decode('utf-8')
|
28 |
|
29 |
-
#
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
"role": "user",
|
37 |
"content": [
|
38 |
{
|
39 |
"type": "text",
|
40 |
-
"text": "
|
41 |
},
|
42 |
{
|
43 |
-
"type": "
|
44 |
-
"
|
45 |
-
"
|
46 |
-
"media_type": "image/png",
|
47 |
-
"data": img_base64
|
48 |
}
|
49 |
}
|
50 |
]
|
51 |
-
}
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
|
56 |
-
return
|
57 |
-
|
58 |
-
except Exception as e:
|
59 |
-
return f"Error in text extraction: {str(e)}"
|
60 |
-
|
61 |
-
def process_pdf(pdf_file):
|
62 |
-
if pdf_file is None:
|
63 |
-
return "Please upload a PDF file."
|
64 |
|
65 |
-
try:
|
66 |
-
# In Spaces, pdf_file is the file path
|
67 |
-
extracted_text = extract_text_from_pdf(pdf_file)
|
68 |
-
return extracted_text
|
69 |
except Exception as e:
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
outputs=gr.Textbox(label="Extracted Text", lines=25),
|
77 |
-
title="PDF Text Extractor (Powered by Claude)",
|
78 |
-
description="Upload a PDF file to extract all text using Claude's Vision capabilities. Please note that processing may take a few minutes depending on the number of pages.",
|
79 |
-
theme=gr.themes.Soft()
|
80 |
-
)
|
81 |
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
import io
|
3 |
from pdf2image import convert_from_path
|
4 |
+
from openai import OpenAI
|
5 |
import base64
|
6 |
+
import asyncio
|
7 |
+
import gradio as gr
|
8 |
|
9 |
+
# We'll use an environment variable for the API key in Spaces
|
10 |
+
OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY")
|
|
|
11 |
|
12 |
+
class PDFFormExtractor:
|
13 |
+
def __init__(self, api_key):
|
14 |
+
self.client = OpenAI(api_key=api_key)
|
15 |
+
|
16 |
+
async def extract_first_form(self, pdf_path):
|
17 |
+
try:
|
18 |
+
if not os.path.exists(pdf_path):
|
19 |
+
raise FileNotFoundError(f"PDF file not found: {pdf_path}")
|
20 |
+
|
21 |
+
print(f"Processing PDF: {pdf_path}")
|
22 |
+
|
23 |
+
# Only convert the first page
|
24 |
+
images = convert_from_path(pdf_path, first_page=1, last_page=1)
|
25 |
+
|
26 |
+
if not images:
|
27 |
+
return "No pages found in the PDF."
|
28 |
+
|
29 |
+
# Process only the first page
|
30 |
+
image = images[0]
|
31 |
+
print("Processing first page...")
|
32 |
|
|
|
33 |
img_buffer = io.BytesIO()
|
34 |
image.save(img_buffer, format='PNG')
|
35 |
img_base64 = base64.b64encode(img_buffer.getvalue()).decode('utf-8')
|
36 |
|
37 |
+
# Custom prompt specifically for extracting the Patient Admission Form
|
38 |
+
prompt = """
|
39 |
+
You are an expert in document processing and OCR with deep knowledge of Markdown formatting. Your task is to extract the structured content from a PDF page image and convert it into a clean Markdown format.
|
40 |
+
|
41 |
+
Extract the Patient Admission Form (KMHIPF002V3) from this image and format it as follows:
|
42 |
+
|
43 |
+
```markdown
|
44 |
+
# PATIENT ADMISSION FORM
|
45 |
+
## DR.KAMAKSHI MEMORIAL HOSPITAL, PALLIKARANAI, CHENNAI.
|
46 |
+
|
47 |
+
### PATIENT PROFILE
|
48 |
+
*Please paste the sticker within the box*
|
49 |
+
|
50 |
+
* UHID: ______
|
51 |
+
* Patient Name: ______
|
52 |
+
* Age/Gender: ______
|
53 |
+
* Doctor Name: ______
|
54 |
+
|
55 |
+
### BASIC INFORMATION
|
56 |
+
* Date & Time of Admission: [DD/MM/YYYY]
|
57 |
+
* Date of Birth: [DD/MM/YYYY]
|
58 |
+
|
59 |
+
### IDENTIFICATION
|
60 |
+
**ID Proof Already Registered**: □ Yes □ No
|
61 |
+
|
62 |
+
**Type of ID**:
|
63 |
+
* □ Aadhar
|
64 |
+
* □ Passport
|
65 |
+
* □ Voter ID
|
66 |
+
* □ Driving License
|
67 |
+
* □ Others
|
68 |
+
|
69 |
+
ID No.: ________________
|
70 |
+
Contact No.: ________________
|
71 |
+
|
72 |
+
### MEDICAL DETAILS
|
73 |
+
* Provisional Diagnosis:
|
74 |
+
* Reason for Admission:
|
75 |
+
* Plan of Care:
|
76 |
+
* Expected Outcome*:
|
77 |
+
|
78 |
+
### CONSULTANT DETAILS
|
79 |
+
* Primary Consultant Name:
|
80 |
+
* Speciality:
|
81 |
+
|
82 |
+
### PATIENT REFERENCE INFORMATION
|
83 |
+
*(To be filled by Front Office)*
|
84 |
+
|
85 |
+
**Reference Via**:
|
86 |
+
* □ Doctor
|
87 |
+
* □ Hospital
|
88 |
+
* □ Ambulance
|
89 |
+
* □ DRKMH Employee
|
90 |
+
* □ Self / Walk In
|
91 |
+
|
92 |
+
**Referrer Details**:
|
93 |
+
* Name: ________________
|
94 |
+
* Contact No.: ________________
|
95 |
+
|
96 |
+
### TYPE OF ADMISSION
|
97 |
+
* □ Emergency
|
98 |
+
* □ Elective
|
99 |
+
* □ MLC
|
100 |
+
* □ Surgery
|
101 |
+
* □ Medical
|
102 |
+
* □ Others: ________________
|
103 |
+
|
104 |
+
### TREATMENT TYPE
|
105 |
+
* □ In Patient
|
106 |
+
* □ Day Care
|
107 |
+
* Transfer To: ________________
|
108 |
+
|
109 |
+
### CONTACT DETAILS
|
110 |
+
**Person to Contact (Next of Kin)**:
|
111 |
+
* Name: ________________
|
112 |
+
* Relationship with Patient: ________________
|
113 |
+
* Address: ________________
|
114 |
+
* Pincode: ________________
|
115 |
+
* Mobile: ________________
|
116 |
+
* Email: ________________
|
117 |
+
|
118 |
+
### OFFICIAL USE
|
119 |
+
* Front Office Executive Name:
|
120 |
+
* Front Office Executive Signature:
|
121 |
+
* Advance Amount Paid:
|
122 |
+
* ICD-10 Code (For Medical Records Section):
|
123 |
+
|
124 |
+
*\\* Subject to change during the course of diseases*
|
125 |
+
|
126 |
+
---
|
127 |
+
*Form No: KMHIPF002V3* """
|
128 |
+
|
129 |
+
response = self.client.chat.completions.create(
|
130 |
+
model="gpt-4o",
|
131 |
+
messages=[
|
132 |
+
{
|
133 |
+
"role": "system",
|
134 |
+
"content": prompt
|
135 |
+
},
|
136 |
+
{
|
137 |
"role": "user",
|
138 |
"content": [
|
139 |
{
|
140 |
"type": "text",
|
141 |
+
"text": "Extract and format the Patient Admission Form from this image according to the specified markdown format."
|
142 |
},
|
143 |
{
|
144 |
+
"type": "image_url",
|
145 |
+
"image_url": {
|
146 |
+
"url": f"data:image/png;base64,{img_base64}"
|
|
|
|
|
147 |
}
|
148 |
}
|
149 |
]
|
150 |
+
}
|
151 |
+
],
|
152 |
+
max_tokens=4096
|
153 |
+
)
|
154 |
|
155 |
+
return response.choices[0].message.content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
|
|
|
|
|
|
|
|
157 |
except Exception as e:
|
158 |
+
print(f"Error in form extraction: {str(e)}")
|
159 |
+
return f"Error: {str(e)}"
|
160 |
+
|
161 |
+
def extract_first_form(pdf_file):
|
162 |
+
if OPENAI_API_KEY is None:
|
163 |
+
return "Error: OpenAI API key not found. Please set the OPENAI_API_KEY environment variable."
|
|
|
|
|
|
|
|
|
|
|
164 |
|
165 |
+
extractor = PDFFormExtractor(OPENAI_API_KEY)
|
166 |
+
|
167 |
+
pdf_path = pdf_file.name
|
168 |
+
result = asyncio.run(extractor.extract_first_form(pdf_path))
|
169 |
+
return result
|
170 |
+
|
171 |
+
iface = gr.Interface(
|
172 |
+
fn=extract_first_form,
|
173 |
+
inputs=gr.File(label="Upload PDF with Patient Admission Form"),
|
174 |
+
outputs=gr.Textbox(label="Extracted Form in Markdown", lines=30),
|
175 |
+
title="Patient Admission Form Extractor",
|
176 |
+
description="Upload a PDF file to extract the Patient Admission Form (first form) in markdown format."
|
177 |
+
)
|
178 |
+
iface.launch()
|