Spaces:
Runtime error
Runtime error
fixed audio interface
Browse files
1.wav
ADDED
|
Binary file (317 kB). View file
|
|
|
app.py
CHANGED
|
@@ -1,80 +1,47 @@
|
|
| 1 |
# Welcome to Team Tonic's MultiMed
|
| 2 |
-
|
| 3 |
-
LANGUAGE_NAME_TO_CODE,
|
| 4 |
-
S2ST_TARGET_LANGUAGE_NAMES,
|
| 5 |
-
S2TT_TARGET_LANGUAGE_NAMES,
|
| 6 |
-
T2TT_TARGET_LANGUAGE_NAMES,
|
| 7 |
-
TEXT_SOURCE_LANGUAGE_NAMES,
|
| 8 |
-
LANG_TO_SPKR_ID,
|
| 9 |
-
)
|
| 10 |
from gradio_client import Client
|
| 11 |
import os
|
| 12 |
import numpy as np
|
| 13 |
import base64
|
| 14 |
-
import torch
|
| 15 |
-
import torchaudio
|
| 16 |
import gradio as gr
|
| 17 |
import requests
|
| 18 |
import json
|
| 19 |
import dotenv
|
| 20 |
-
from
|
| 21 |
-
import torchaudio
|
| 22 |
import PIL
|
| 23 |
dotenv.load_dotenv()
|
| 24 |
|
| 25 |
-
client = Client("
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
AUDIO_SAMPLE_RATE = 16000.0
|
| 29 |
-
MAX_INPUT_AUDIO_LENGTH = 60 # in seconds
|
| 30 |
-
DEFAULT_TARGET_LANGUAGE = "English"
|
| 31 |
|
| 32 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 33 |
|
| 34 |
|
| 35 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
| 36 |
|
| 37 |
-
|
| 38 |
-
# model = SeamlessM4TModel.from_pretrained("ylacombe/hf-seamless-m4t-large").to(device)
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
def process_speech(sound):
|
| 42 |
-
"""
|
| 43 |
-
processing sound using seamless_m4t
|
| 44 |
-
"""
|
| 45 |
-
# task_name = "T2TT"
|
| 46 |
-
result = client.predict(task_name="S2TT",
|
| 47 |
-
audio_source="microphone",
|
| 48 |
-
input_audio_mic=sound,
|
| 49 |
-
input_audio_file=None,
|
| 50 |
-
input_text=None,
|
| 51 |
-
source_language=None,
|
| 52 |
-
target_language="English")
|
| 53 |
-
print(result)
|
| 54 |
-
return result[1]
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
def process_speech_using_model(sound):
|
| 58 |
"""
|
| 59 |
processing sound using seamless_m4t
|
| 60 |
"""
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
|
| 80 |
def process_image(image) :
|
|
@@ -258,15 +225,7 @@ def process_and_query(text, image, audio):
|
|
| 258 |
text = process_image(image)
|
| 259 |
|
| 260 |
if audio is not None:
|
| 261 |
-
# audio = audio[0].numpy()
|
| 262 |
-
# audio = audio.astype(np.float32)
|
| 263 |
-
# audio = audio / np.max(np.abs(audio))
|
| 264 |
-
# audio = audio * 32768
|
| 265 |
-
# audio = audio.astype(np.int16)
|
| 266 |
-
# audio = audio.tobytes()
|
| 267 |
-
# audio = base64.b64encode(audio).decode('utf-8')
|
| 268 |
text = process_speech(audio)
|
| 269 |
-
print(text)
|
| 270 |
|
| 271 |
# Now, use the text (either provided by the user or obtained from OpenAI) to query Vectara
|
| 272 |
vectara_response_json = query_vectara(text)
|
|
|
|
| 1 |
# Welcome to Team Tonic's MultiMed
|
| 2 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
from gradio_client import Client
|
| 4 |
import os
|
| 5 |
import numpy as np
|
| 6 |
import base64
|
|
|
|
|
|
|
| 7 |
import gradio as gr
|
| 8 |
import requests
|
| 9 |
import json
|
| 10 |
import dotenv
|
| 11 |
+
from scipy.io.wavfile import write
|
|
|
|
| 12 |
import PIL
|
| 13 |
dotenv.load_dotenv()
|
| 14 |
|
| 15 |
+
client = Client("facebook/seamless_m4t")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
|
|
|
| 17 |
|
| 18 |
|
|
|
|
| 19 |
|
| 20 |
+
def process_speech(audio):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
"""
|
| 22 |
processing sound using seamless_m4t
|
| 23 |
"""
|
| 24 |
+
audio_name = f"{np.random.randint(0, 100)}.wav"
|
| 25 |
+
sr, data = audio
|
| 26 |
+
write(audio_name, sr, data.astype(np.int16))
|
| 27 |
+
|
| 28 |
+
out = client.predict(
|
| 29 |
+
"S2TT",
|
| 30 |
+
"file",
|
| 31 |
+
None,
|
| 32 |
+
audio_name,
|
| 33 |
+
"",
|
| 34 |
+
"French",# source language
|
| 35 |
+
"English",# target language
|
| 36 |
+
api_name="/run",
|
| 37 |
+
)
|
| 38 |
+
out = out[1] # get the text
|
| 39 |
+
try :
|
| 40 |
+
return f"{out}"
|
| 41 |
+
except Exception as e :
|
| 42 |
+
return f"{e}"
|
| 43 |
+
|
| 44 |
+
|
| 45 |
|
| 46 |
|
| 47 |
def process_image(image) :
|
|
|
|
| 225 |
text = process_image(image)
|
| 226 |
|
| 227 |
if audio is not None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 228 |
text = process_speech(audio)
|
|
|
|
| 229 |
|
| 230 |
# Now, use the text (either provided by the user or obtained from OpenAI) to query Vectara
|
| 231 |
vectara_response_json = query_vectara(text)
|
requirements.txt
CHANGED
|
@@ -5,3 +5,4 @@ torchaudio==2.0.2
|
|
| 5 |
sentencepiece
|
| 6 |
python-dotenv
|
| 7 |
Pillow
|
|
|
|
|
|
| 5 |
sentencepiece
|
| 6 |
python-dotenv
|
| 7 |
Pillow
|
| 8 |
+
scipy
|
test.py
CHANGED
|
@@ -5,57 +5,32 @@ import requests
|
|
| 5 |
import gradio as gr
|
| 6 |
import PIL
|
| 7 |
import numpy as np
|
| 8 |
-
|
|
|
|
| 9 |
dotenv.load_dotenv()
|
| 10 |
|
| 11 |
-
|
| 12 |
-
def process_image(
|
| 13 |
-
#
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
"
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
{
|
| 30 |
-
"role": "user",
|
| 31 |
-
"content": [
|
| 32 |
-
{
|
| 33 |
-
"type": "text",
|
| 34 |
-
"text": "What's in this image?"
|
| 35 |
-
},
|
| 36 |
-
{
|
| 37 |
-
"type": "image_url",
|
| 38 |
-
"image_url": {
|
| 39 |
-
"url": f"data:image/jpeg;base64,{base64_image}"
|
| 40 |
-
}
|
| 41 |
-
}
|
| 42 |
-
]
|
| 43 |
-
}
|
| 44 |
-
],
|
| 45 |
-
"max_tokens": 300
|
| 46 |
-
}
|
| 47 |
-
|
| 48 |
-
response = requests.post("https://api.openai.com/v1/chat/completions", headers=headers, json=payload)
|
| 49 |
-
|
| 50 |
try :
|
| 51 |
-
out = response.json()
|
| 52 |
-
out = out["choices"][0]["message"]["content"]
|
| 53 |
-
print("out : ", out)
|
| 54 |
-
print("type(out) : ", type(out))
|
| 55 |
-
|
| 56 |
return f"{out}"
|
| 57 |
except Exception as e :
|
| 58 |
return f"{e}"
|
| 59 |
|
| 60 |
-
iface = gr.Interface(fn=process_image, inputs="
|
| 61 |
iface.launch()
|
|
|
|
| 5 |
import gradio as gr
|
| 6 |
import PIL
|
| 7 |
import numpy as np
|
| 8 |
+
from scipy.io.wavfile import write
|
| 9 |
+
import gradio_client as grc
|
| 10 |
dotenv.load_dotenv()
|
| 11 |
|
| 12 |
+
client = grc.Client("facebook/seamless_m4t")
|
| 13 |
+
def process_image(audio):
|
| 14 |
+
# audio_name = f"{np.random.randint(0, 100)}.jpg"
|
| 15 |
+
audio_name = f"{1}.wav"
|
| 16 |
+
sr, data = audio
|
| 17 |
+
write(audio_name, sr, data.astype(np.int16))
|
| 18 |
+
|
| 19 |
+
out = client.predict(
|
| 20 |
+
"S2TT",
|
| 21 |
+
"file",
|
| 22 |
+
None,
|
| 23 |
+
audio_name,
|
| 24 |
+
"",
|
| 25 |
+
"French",# source language
|
| 26 |
+
"English",# target language
|
| 27 |
+
api_name="/run",
|
| 28 |
+
)
|
| 29 |
+
out = out[1] # get the text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
try :
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
return f"{out}"
|
| 32 |
except Exception as e :
|
| 33 |
return f"{e}"
|
| 34 |
|
| 35 |
+
iface = gr.Interface(fn=process_image, inputs="audio", outputs="text")
|
| 36 |
iface.launch()
|