Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,115 +1,33 @@
|
|
1 |
-
import
|
2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
import torch
|
4 |
-
import torch.nn as nn
|
5 |
-
import os
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
#
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
def forward(self, x):
|
38 |
-
x = self.relu(self.layer1(x))
|
39 |
-
x = self.relu(self.layer2(x))
|
40 |
-
x = self.relu(self.layer3(x))
|
41 |
-
x = self.relu(self.layer4(x))
|
42 |
-
x = self.relu(self.layer5(x))
|
43 |
-
return self.output(x)
|
44 |
-
|
45 |
-
class LargeRecurrentNN(nn.Module):
|
46 |
-
def __init__(self):
|
47 |
-
super(LargeRecurrentNN, self).__init__()
|
48 |
-
self.rnn = nn.RNN(input_size=512, hidden_size=2048, num_layers=3, batch_first=True)
|
49 |
-
self.fc = nn.Linear(2048, 1)
|
50 |
-
|
51 |
-
def forward(self, x):
|
52 |
-
h0 = torch.zeros(3, x.size(0), 2048).to(x.device)
|
53 |
-
out, _ = self.rnn(x, h0)
|
54 |
-
out = self.fc(out[:, -1, :])
|
55 |
-
return out
|
56 |
-
|
57 |
-
class LargeConvolutionalNN(nn.Module):
|
58 |
-
def __init__(self):
|
59 |
-
super(LargeConvolutionalNN, self).__init__()
|
60 |
-
self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1)
|
61 |
-
self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
|
62 |
-
self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
|
63 |
-
self.fc1 = nn.Linear(128*32*32, 1024)
|
64 |
-
self.fc2 = nn.Linear(1024, 1)
|
65 |
-
self.relu = nn.ReLU()
|
66 |
-
|
67 |
-
def forward(self, x):
|
68 |
-
x = self.relu(self.conv1(x))
|
69 |
-
x = self.relu(self.conv2(x))
|
70 |
-
x = self.relu(self.conv3(x))
|
71 |
-
x = x.view(x.size(0), -1)
|
72 |
-
x = self.relu(self.fc1(x))
|
73 |
-
return self.fc2(x)
|
74 |
-
|
75 |
-
class PhiModel(nn.Module):
|
76 |
-
def __init__(self):
|
77 |
-
super(PhiModel, self).__init__()
|
78 |
-
self.fc = nn.Linear(512, 1024)
|
79 |
-
|
80 |
-
def forward(self, x):
|
81 |
-
return self.fc(x)
|
82 |
-
|
83 |
-
class GeneticAlgorithm(nn.Module):
|
84 |
-
def __init__(self):
|
85 |
-
super(GeneticAlgorithm, self).__init__()
|
86 |
-
self.fc = nn.Linear(512, 1024)
|
87 |
-
|
88 |
-
def forward(self, x):
|
89 |
-
return self.fc(x)
|
90 |
-
|
91 |
-
system_message = "You are Surefire Pulse AGI ACC 4.500, created by the ACC and Tej Andrews, the owner of the ACC. Your personal name is Pulse."
|
92 |
-
|
93 |
-
def chat(message, history):
|
94 |
-
prompt = f"{system_message}\n\n"
|
95 |
-
|
96 |
-
for msg in history:
|
97 |
-
prompt += f"User: {msg[0]}\nAssistant: {msg[1]}\n"
|
98 |
-
|
99 |
-
prompt += f"User: {message}\nAssistant:"
|
100 |
-
|
101 |
-
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024)
|
102 |
-
outputs = model.generate(**inputs, max_new_tokens=150)
|
103 |
-
|
104 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
105 |
-
|
106 |
-
history.append((message, response))
|
107 |
-
|
108 |
-
return response, history
|
109 |
-
|
110 |
-
gr.ChatInterface(
|
111 |
-
fn=chat,
|
112 |
-
type="messages",
|
113 |
-
title="Chatbot",
|
114 |
-
description="Interact with the AI assistant."
|
115 |
-
).launch()
|
|
|
1 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, StopStringCriteria, StoppingCriteriaList
|
|
|
2 |
import torch
|
|
|
|
|
3 |
|
4 |
+
# Load the tokenizer and model
|
5 |
+
repo_name = "nvidia/Hymba-1.5B-Instruct"
|
6 |
+
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(repo_name, trust_remote_code=True)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(repo_name, trust_remote_code=True)
|
9 |
+
model = model.cuda().to(torch.bfloat16)
|
10 |
+
|
11 |
+
# Chat with Hymba
|
12 |
+
prompt = input()
|
13 |
+
|
14 |
+
messages = [
|
15 |
+
{"role": "system", "content": "You are a helpful assistant."}
|
16 |
+
]
|
17 |
+
messages.append({"role": "user", "content": prompt})
|
18 |
+
|
19 |
+
# Apply chat template
|
20 |
+
tokenized_chat = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to('cuda')
|
21 |
+
stopping_criteria = StoppingCriteriaList([StopStringCriteria(tokenizer=tokenizer, stop_strings="</s>")])
|
22 |
+
outputs = model.generate(
|
23 |
+
tokenized_chat,
|
24 |
+
max_new_tokens=256,
|
25 |
+
do_sample=False,
|
26 |
+
temperature=0.7,
|
27 |
+
use_cache=True,
|
28 |
+
stopping_criteria=stopping_criteria
|
29 |
+
)
|
30 |
+
input_length = tokenized_chat.shape[1]
|
31 |
+
response = tokenizer.decode(outputs[0][input_length:], skip_special_tokens=True)
|
32 |
+
|
33 |
+
print(f"Model response: {response}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|