TejAndrewsACC commited on
Commit
b283808
·
verified ·
1 Parent(s): 9d0cd98

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +76 -12
app.py CHANGED
@@ -1,25 +1,89 @@
1
- from transformers import AutoModelForCausalLM, AutoTokenizer
2
  import gradio as gr
 
 
 
3
  import os
4
 
5
- # Hugging Face model and token
6
  model_name = "nvidia/Hymba-1.5B-Instruct"
7
  hf_token = os.getenv("DOWNLOAD")
8
-
9
- # Load model and tokenizer
10
  tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=hf_token)
11
  model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=hf_token)
12
 
13
- # System message
14
- system_message = "You are a helpful assistant. Always provide clear and concise responses."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
- # Chat function
17
- def chat(user_input):
18
- prompt = f"{system_message}\n\nUser: {user_input}\nAssistant:"
19
  inputs = tokenizer(prompt, return_tensors="pt")
20
  outputs = model.generate(**inputs, max_new_tokens=150)
21
  return tokenizer.decode(outputs[0], skip_special_tokens=True)
22
 
23
- # Gradio interface
24
- interface = gr.Interface(fn=chat, inputs="text", outputs="text")
25
- interface.launch()
 
 
 
 
 
1
  import gradio as gr
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
+ import torch
4
+ import torch.nn as nn
5
  import os
6
 
7
+ # Model setup
8
  model_name = "nvidia/Hymba-1.5B-Instruct"
9
  hf_token = os.getenv("DOWNLOAD")
 
 
10
  tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=hf_token)
11
  model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=hf_token)
12
 
13
+ class LargeNeuralNetwork(nn.Module):
14
+ def __init__(self):
15
+ super(LargeNeuralNetwork, self).__init__()
16
+ self.layer1 = nn.Linear(512, 2048)
17
+ self.layer2 = nn.Linear(2048, 4096)
18
+ self.layer3 = nn.Linear(4096, 8192)
19
+ self.layer4 = nn.Linear(8192, 16384)
20
+ self.layer5 = nn.Linear(16384, 32768)
21
+ self.relu = nn.ReLU()
22
+ self.output = nn.Linear(32768, 1)
23
+
24
+ def forward(self, x):
25
+ x = self.relu(self.layer1(x))
26
+ x = self.relu(self.layer2(x))
27
+ x = self.relu(self.layer3(x))
28
+ x = self.relu(self.layer4(x))
29
+ x = self.relu(self.layer5(x))
30
+ return self.output(x)
31
+
32
+ class LargeRecurrentNN(nn.Module):
33
+ def __init__(self):
34
+ super(LargeRecurrentNN, self).__init__()
35
+ self.rnn = nn.RNN(input_size=512, hidden_size=2048, num_layers=3, batch_first=True)
36
+ self.fc = nn.Linear(2048, 1)
37
+
38
+ def forward(self, x):
39
+ h0 = torch.zeros(3, x.size(0), 2048).to(x.device)
40
+ out, _ = self.rnn(x, h0)
41
+ out = self.fc(out[:, -1, :])
42
+ return out
43
+
44
+ class LargeConvolutionalNN(nn.Module):
45
+ def __init__(self):
46
+ super(LargeConvolutionalNN, self).__init__()
47
+ self.conv1 = nn.Conv2d(1, 32, kernel_size=3, stride=1, padding=1)
48
+ self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1)
49
+ self.conv3 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
50
+ self.fc1 = nn.Linear(128*32*32, 1024)
51
+ self.fc2 = nn.Linear(1024, 1)
52
+ self.relu = nn.ReLU()
53
+
54
+ def forward(self, x):
55
+ x = self.relu(self.conv1(x))
56
+ x = self.relu(self.conv2(x))
57
+ x = self.relu(self.conv3(x))
58
+ x = x.view(x.size(0), -1)
59
+ x = self.relu(self.fc1(x))
60
+ return self.fc2(x)
61
+
62
+ class PhiModel(nn.Module):
63
+ def __init__(self):
64
+ super(PhiModel, self).__init__()
65
+ self.fc = nn.Linear(512, 1024)
66
+
67
+ def forward(self, x):
68
+ return self.fc(x)
69
+
70
+ class GeneticAlgorithm(nn.Module):
71
+ def __init__(self):
72
+ super(GeneticAlgorithm, self).__init__()
73
+ self.fc = nn.Linear(512, 1024)
74
+
75
+ def forward(self, x):
76
+ return self.fc(x)
77
 
78
+ def chat(message, history):
79
+ prompt = f"User: {message}\nAssistant:"
 
80
  inputs = tokenizer(prompt, return_tensors="pt")
81
  outputs = model.generate(**inputs, max_new_tokens=150)
82
  return tokenizer.decode(outputs[0], skip_special_tokens=True)
83
 
84
+ gr.ChatInterface(
85
+ fn=chat,
86
+ type="messages",
87
+ title="Chatbot",
88
+ description="Interact with the AI assistant."
89
+ ).launch()