Spaces:
Configuration error
Configuration error
Add backend and frontend project files
Browse files- app.py +57 -66
- requirements.txt +5 -14
- texior-app/.gitignore +72 -0
- texior-app/App.js +297 -0
- texior-app/app.json +29 -0
- texior-app/assets/adaptive-icon.png +0 -0
- texior-app/assets/favicon.png +0 -0
- texior-app/assets/icon.png +0 -0
- texior-app/assets/splash-icon.png +0 -0
- texior-app/index.js +8 -0
- texior-app/package-lock.json +0 -0
- texior-app/package.json +22 -0
app.py
CHANGED
|
@@ -1,101 +1,92 @@
|
|
| 1 |
-
# -*- coding: utf-8 -*-
|
| 2 |
-
"""app.py
|
| 3 |
-
|
| 4 |
-
Automatically generated by Colab.
|
| 5 |
-
|
| 6 |
-
Original file is located at
|
| 7 |
-
https://colab.research.google.com/drive/1E5d9dWFZwd3QoYrwG2SkR-slXGm2aMfL
|
| 8 |
-
"""
|
| 9 |
-
|
| 10 |
import pickle
|
| 11 |
import json
|
| 12 |
import torch
|
| 13 |
-
from
|
| 14 |
-
|
| 15 |
from transformers import BertTokenizer
|
|
|
|
|
|
|
| 16 |
|
| 17 |
# 1. Initialize App and Load Assets
|
| 18 |
# ==================================
|
| 19 |
-
app =
|
| 20 |
-
title="TEXI'OR Sentiment Analysis API",
|
| 21 |
-
description="An API to classify text into different sentiments using a fine-tuned BERT model.",
|
| 22 |
-
version="1.0"
|
| 23 |
-
)
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
text: str
|
| 28 |
|
| 29 |
-
#
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
-
# Load
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
model.to(device)
|
| 38 |
-
model.eval() # Set model to evaluation mode
|
| 39 |
-
print("✅ Model 'bert_sentiment_model (1).pkl' loaded successfully.")
|
| 40 |
-
except FileNotFoundError:
|
| 41 |
-
print("❌ Model file not found. Make sure 'bert_sentiment_model (1).pkl' is uploaded.")
|
| 42 |
-
model = None
|
| 43 |
|
| 44 |
try:
|
| 45 |
-
with open('
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
label_dict = json.load(f)
|
| 47 |
-
# Create an inverse mapping from index to label string (e.g., {0: "nocode"})
|
| 48 |
idx2label = {int(v): k for k, v in label_dict.items()}
|
| 49 |
-
print("✅ Label dictionary '
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
|
|
|
| 53 |
|
| 54 |
-
|
| 55 |
-
print("
|
| 56 |
|
| 57 |
|
| 58 |
# 2. Define API Endpoints
|
| 59 |
# ========================
|
| 60 |
-
@app.
|
| 61 |
-
def
|
| 62 |
-
return {"message": "Welcome to the TEXI'OR API. Use the /predict endpoint to get a sentiment."}
|
| 63 |
-
|
| 64 |
-
@app.post("/predict")
|
| 65 |
-
def predict_sentiment(text_input: TextInput):
|
| 66 |
-
"""
|
| 67 |
-
Predicts the sentiment of a given text.
|
| 68 |
-
- Input: A JSON with a "text" field.
|
| 69 |
-
- Output: A JSON with the predicted "sentiment" and "confidence" score.
|
| 70 |
-
"""
|
| 71 |
if not all([model, idx2label, tokenizer]):
|
| 72 |
-
return {"error": "API is not ready.
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
-
|
|
|
|
| 75 |
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
text, padding=True, truncation=True, max_length=150, return_tensors='pt'
|
| 79 |
-
)
|
| 80 |
|
| 81 |
-
#
|
|
|
|
| 82 |
input_ids = inputs['input_ids'].to(device)
|
| 83 |
attention_mask = inputs['attention_mask'].to(device)
|
| 84 |
-
|
| 85 |
-
# Get model predictions without calculating gradients
|
| 86 |
with torch.no_grad():
|
| 87 |
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
| 88 |
|
| 89 |
-
# Process
|
| 90 |
logits = outputs.logits
|
| 91 |
probabilities = torch.nn.functional.softmax(logits, dim=-1)
|
| 92 |
confidence, predicted_class_idx = torch.max(probabilities, dim=1)
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
predicted_label = idx2label.get(predicted_class_idx.item(), "Unknown Label")
|
| 96 |
confidence_score = confidence.item()
|
| 97 |
|
| 98 |
-
return {
|
| 99 |
"sentiment": predicted_label,
|
| 100 |
"confidence": round(confidence_score, 4)
|
| 101 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import pickle
|
| 2 |
import json
|
| 3 |
import torch
|
| 4 |
+
from flask import Flask, request, jsonify
|
| 5 |
+
# CORRECTED: Changed back to BertTokenizer to match your model
|
| 6 |
from transformers import BertTokenizer
|
| 7 |
+
import io
|
| 8 |
+
from waitress import serve
|
| 9 |
|
| 10 |
# 1. Initialize App and Load Assets
|
| 11 |
# ==================================
|
| 12 |
+
app = Flask(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
+
device = torch.device('cpu')
|
| 15 |
+
print("✅ Using device: cpu")
|
|
|
|
| 16 |
|
| 17 |
+
# Custom Unpickler to load a GPU-trained model onto a CPU
|
| 18 |
+
class CPU_Unpickler(pickle.Unpickler):
|
| 19 |
+
def find_class(self, module, name):
|
| 20 |
+
if module == 'torch.storage' and name == '_load_from_bytes':
|
| 21 |
+
return lambda b: torch.load(io.BytesIO(b), map_location='cpu')
|
| 22 |
+
else:
|
| 23 |
+
return super().find_class(module, name)
|
| 24 |
|
| 25 |
+
# Load model, dictionary, and tokenizer
|
| 26 |
+
model = None
|
| 27 |
+
idx2label = None
|
| 28 |
+
tokenizer = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
try:
|
| 31 |
+
with open('bert_sentiment_model.pkl', 'rb') as f:
|
| 32 |
+
model = CPU_Unpickler(f).load()
|
| 33 |
+
model.to(device)
|
| 34 |
+
model.eval()
|
| 35 |
+
print("✅ Model 'bert_sentiment_model.pkl' loaded successfully.")
|
| 36 |
+
|
| 37 |
+
with open('Label_Dict.json', 'r') as f:
|
| 38 |
label_dict = json.load(f)
|
|
|
|
| 39 |
idx2label = {int(v): k for k, v in label_dict.items()}
|
| 40 |
+
print("✅ Label dictionary 'Label_Dict.json' loaded successfully.")
|
| 41 |
+
|
| 42 |
+
# CORRECTED: Use the original BERT tokenizer
|
| 43 |
+
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
| 44 |
+
print("✅ Tokenizer loaded successfully.")
|
| 45 |
|
| 46 |
+
except Exception as e:
|
| 47 |
+
print(f"❌ Error loading assets: {e}")
|
| 48 |
|
| 49 |
|
| 50 |
# 2. Define API Endpoints
|
| 51 |
# ========================
|
| 52 |
+
@app.route("/predict", methods=['POST'])
|
| 53 |
+
def predict_sentiment():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
if not all([model, idx2label, tokenizer]):
|
| 55 |
+
return jsonify({"error": "API is not ready. Check server logs."}), 500
|
| 56 |
+
|
| 57 |
+
if not request.is_json:
|
| 58 |
+
return jsonify({"error": "Request must be JSON"}), 400
|
| 59 |
|
| 60 |
+
data = request.get_json()
|
| 61 |
+
text = data.get("text")
|
| 62 |
|
| 63 |
+
if not text:
|
| 64 |
+
return jsonify({"error": "Missing 'text' field in request"}), 400
|
|
|
|
|
|
|
| 65 |
|
| 66 |
+
# Tokenize and predict
|
| 67 |
+
inputs = tokenizer(text, padding=True, truncation=True, max_length=150, return_tensors='pt')
|
| 68 |
input_ids = inputs['input_ids'].to(device)
|
| 69 |
attention_mask = inputs['attention_mask'].to(device)
|
| 70 |
+
|
|
|
|
| 71 |
with torch.no_grad():
|
| 72 |
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
| 73 |
|
| 74 |
+
# Process output
|
| 75 |
logits = outputs.logits
|
| 76 |
probabilities = torch.nn.functional.softmax(logits, dim=-1)
|
| 77 |
confidence, predicted_class_idx = torch.max(probabilities, dim=1)
|
| 78 |
+
|
| 79 |
+
predicted_label = idx2label.get(predicted_class_idx.item(), "Unknown")
|
|
|
|
| 80 |
confidence_score = confidence.item()
|
| 81 |
|
| 82 |
+
return jsonify({
|
| 83 |
"sentiment": predicted_label,
|
| 84 |
"confidence": round(confidence_score, 4)
|
| 85 |
+
})
|
| 86 |
+
|
| 87 |
+
# 3. Run the Server
|
| 88 |
+
# ===================
|
| 89 |
+
if __name__ == "__main__":
|
| 90 |
+
print("🚀 Starting Flask server with Waitress...")
|
| 91 |
+
# Using 0.0.0.0 makes the server accessible on your local network
|
| 92 |
+
serve(app, host='0.0.0.0', port=5000)
|
requirements.txt
CHANGED
|
@@ -1,14 +1,5 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
"surprise": 4,
|
| 7 |
-
"sad": 5,
|
| 8 |
-
"happy|surprise": 6,
|
| 9 |
-
"happy|sad": 7,
|
| 10 |
-
"disgust|angry": 8,
|
| 11 |
-
"disgust": 9,
|
| 12 |
-
"sad|disgust": 10,
|
| 13 |
-
"sad|angry": 11
|
| 14 |
-
}
|
|
|
|
| 1 |
+
Flask
|
| 2 |
+
torch
|
| 3 |
+
transformers
|
| 4 |
+
scikit-learn
|
| 5 |
+
waitress
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
texior-app/.gitignore
ADDED
|
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Learn more https://docs.github.com/en/get-started/getting-started-with-git/ignoring-files
|
| 2 |
+
|
| 3 |
+
# dependencies
|
| 4 |
+
node_modules/
|
| 5 |
+
|
| 6 |
+
# Expo
|
| 7 |
+
.expo/
|
| 8 |
+
dist/
|
| 9 |
+
web-build/
|
| 10 |
+
expo-env.d.ts
|
| 11 |
+
|
| 12 |
+
# Native
|
| 13 |
+
.kotlin/
|
| 14 |
+
*.orig.*
|
| 15 |
+
*.jks
|
| 16 |
+
*.p8
|
| 17 |
+
*.p12
|
| 18 |
+
*.key
|
| 19 |
+
*.mobileprovision
|
| 20 |
+
|
| 21 |
+
# Metro
|
| 22 |
+
.metro-health-check*
|
| 23 |
+
|
| 24 |
+
# debug
|
| 25 |
+
npm-debug.*
|
| 26 |
+
yarn-debug.*
|
| 27 |
+
yarn-error.*
|
| 28 |
+
|
| 29 |
+
# macOS
|
| 30 |
+
.DS_Store
|
| 31 |
+
*.pem
|
| 32 |
+
|
| 33 |
+
# local env files
|
| 34 |
+
.env*.local
|
| 35 |
+
|
| 36 |
+
# typescript
|
| 37 |
+
*.tsbuildinfo
|
| 38 |
+
|
| 39 |
+
# generated native folders
|
| 40 |
+
/ios
|
| 41 |
+
/android
|
| 42 |
+
==================================
|
| 43 |
+
Python & Flask Backend Specific
|
| 44 |
+
==================================
|
| 45 |
+
Ignore the virtual environment folder
|
| 46 |
+
/texior-api/venv/
|
| 47 |
+
|
| 48 |
+
Ignore Python's compiled file cache
|
| 49 |
+
/texior-api/pycache/
|
| 50 |
+
/texior-api/*.pyc
|
| 51 |
+
|
| 52 |
+
==================================
|
| 53 |
+
React Native & Expo Frontend Specific
|
| 54 |
+
==================================
|
| 55 |
+
Ignore the massive node modules folder
|
| 56 |
+
/texior-app/node_modules/
|
| 57 |
+
|
| 58 |
+
Ignore local Expo configuration and cache
|
| 59 |
+
/texior-app/.expo/
|
| 60 |
+
|
| 61 |
+
Ignore log files
|
| 62 |
+
/texior-app/npm-debug.log
|
| 63 |
+
/texior-app/yarn-error.log
|
| 64 |
+
|
| 65 |
+
==================================
|
| 66 |
+
General - IDE and OS Files
|
| 67 |
+
==================================
|
| 68 |
+
Ignore VS Code editor settings
|
| 69 |
+
.vscode/
|
| 70 |
+
|
| 71 |
+
Ignore macOS generated files
|
| 72 |
+
.DS_Store
|
texior-app/App.js
ADDED
|
@@ -0,0 +1,297 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import React, { useState } from 'react';
|
| 2 |
+
import {
|
| 3 |
+
StyleSheet,
|
| 4 |
+
Text,
|
| 5 |
+
View,
|
| 6 |
+
TextInput,
|
| 7 |
+
TouchableOpacity,
|
| 8 |
+
ActivityIndicator,
|
| 9 |
+
Keyboard,
|
| 10 |
+
ScrollView,
|
| 11 |
+
SafeAreaView,
|
| 12 |
+
StatusBar,
|
| 13 |
+
Platform,
|
| 14 |
+
} from 'react-native';
|
| 15 |
+
|
| 16 |
+
const API_URL = "http://192.168.1.8:5000/predict"; // update if needed
|
| 17 |
+
|
| 18 |
+
export default function App() {
|
| 19 |
+
const [text, setText] = useState('');
|
| 20 |
+
const [sentiment, setSentiment] = useState(null);
|
| 21 |
+
const [confidence, setConfidence] = useState(null);
|
| 22 |
+
const [isLoading, setIsLoading] = useState(false);
|
| 23 |
+
const [error, setError] = useState(null);
|
| 24 |
+
|
| 25 |
+
const handlePredict = async () => {
|
| 26 |
+
if (text.trim() === '') {
|
| 27 |
+
setError('Please enter some text to analyze.');
|
| 28 |
+
return;
|
| 29 |
+
}
|
| 30 |
+
|
| 31 |
+
if (API_URL.includes("YOUR_COMPUTER_IP_ADDRESS")) {
|
| 32 |
+
setError("Please update the API_URL with your actual IP address.");
|
| 33 |
+
return;
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
+
Keyboard.dismiss();
|
| 37 |
+
setIsLoading(true);
|
| 38 |
+
setError(null);
|
| 39 |
+
|
| 40 |
+
try {
|
| 41 |
+
const response = await fetch(API_URL, {
|
| 42 |
+
method: 'POST',
|
| 43 |
+
headers: { 'Content-Type': 'application/json' },
|
| 44 |
+
body: JSON.stringify({ text }),
|
| 45 |
+
});
|
| 46 |
+
|
| 47 |
+
let data;
|
| 48 |
+
try {
|
| 49 |
+
data = await response.json();
|
| 50 |
+
} catch {
|
| 51 |
+
throw new Error('Invalid response from server. Expected JSON.');
|
| 52 |
+
}
|
| 53 |
+
|
| 54 |
+
if (response.ok) {
|
| 55 |
+
setSentiment(data.sentiment);
|
| 56 |
+
setConfidence(data.confidence);
|
| 57 |
+
// NOTE: we intentionally do NOT clear the input so text is retained
|
| 58 |
+
} else {
|
| 59 |
+
throw new Error(data.error || 'API returned an error.');
|
| 60 |
+
}
|
| 61 |
+
} catch (err) {
|
| 62 |
+
console.error(err);
|
| 63 |
+
setError(
|
| 64 |
+
'Failed to connect to the API. Ensure your Flask server is running and your device is on the same Wi-Fi network.'
|
| 65 |
+
);
|
| 66 |
+
} finally {
|
| 67 |
+
setIsLoading(false);
|
| 68 |
+
}
|
| 69 |
+
};
|
| 70 |
+
|
| 71 |
+
const getSentimentStyle = (label) => {
|
| 72 |
+
switch (label?.toLowerCase()) {
|
| 73 |
+
case 'happy':
|
| 74 |
+
return { color: '#27ae60' };
|
| 75 |
+
case 'sad':
|
| 76 |
+
return { color: '#2980b9' };
|
| 77 |
+
case 'angry':
|
| 78 |
+
return { color: '#e74c3c' };
|
| 79 |
+
case 'surprise':
|
| 80 |
+
return { color: '#f1c40f' };
|
| 81 |
+
case 'disgust':
|
| 82 |
+
return { color: '#8e44ad' };
|
| 83 |
+
default:
|
| 84 |
+
return { color: '#7f8c8d' };
|
| 85 |
+
}
|
| 86 |
+
};
|
| 87 |
+
|
| 88 |
+
return (
|
| 89 |
+
<SafeAreaView style={styles.safeArea}>
|
| 90 |
+
<StatusBar
|
| 91 |
+
barStyle="dark-content"
|
| 92 |
+
backgroundColor={styles.safeArea.backgroundColor}
|
| 93 |
+
/>
|
| 94 |
+
<ScrollView contentContainerStyle={styles.container}>
|
| 95 |
+
<View style={styles.header}>
|
| 96 |
+
<Text style={styles.title}>TEXI'OR</Text>
|
| 97 |
+
<Text style={styles.subtitle}>Mood & Sentiment Analyzer</Text>
|
| 98 |
+
</View>
|
| 99 |
+
|
| 100 |
+
<View style={styles.card}>
|
| 101 |
+
<TextInput
|
| 102 |
+
style={styles.input}
|
| 103 |
+
placeholder="How are you feeling today?"
|
| 104 |
+
placeholderTextColor="#9aa0a6"
|
| 105 |
+
value={text}
|
| 106 |
+
onChangeText={setText}
|
| 107 |
+
multiline
|
| 108 |
+
textAlignVertical="top"
|
| 109 |
+
/>
|
| 110 |
+
|
| 111 |
+
<TouchableOpacity
|
| 112 |
+
style={[styles.button, isLoading && styles.buttonDisabled]}
|
| 113 |
+
onPress={handlePredict}
|
| 114 |
+
disabled={isLoading}
|
| 115 |
+
activeOpacity={0.85}
|
| 116 |
+
>
|
| 117 |
+
{isLoading ? (
|
| 118 |
+
<ActivityIndicator size="small" color="#fff" />
|
| 119 |
+
) : (
|
| 120 |
+
<Text style={styles.buttonText}>Analyze Mood</Text>
|
| 121 |
+
)}
|
| 122 |
+
</TouchableOpacity>
|
| 123 |
+
|
| 124 |
+
{error ? <Text style={styles.errorText}>{error}</Text> : null}
|
| 125 |
+
|
| 126 |
+
{sentiment && Number.isFinite(confidence) && (
|
| 127 |
+
<View style={styles.resultContainer}>
|
| 128 |
+
<Text style={styles.resultLabel}>PREDICTED MOOD</Text>
|
| 129 |
+
<Text style={[styles.resultSentiment, getSentimentStyle(sentiment)]}>
|
| 130 |
+
{String(sentiment).toUpperCase()}
|
| 131 |
+
</Text>
|
| 132 |
+
|
| 133 |
+
<View style={styles.confidenceBarBackground}>
|
| 134 |
+
<View
|
| 135 |
+
style={[
|
| 136 |
+
styles.confidenceBarFill,
|
| 137 |
+
{ width: `${Math.max(0, Math.min(100, (confidence * 100).toFixed(0)))}%` },
|
| 138 |
+
]}
|
| 139 |
+
/>
|
| 140 |
+
</View>
|
| 141 |
+
|
| 142 |
+
<Text style={styles.resultConfidence}>
|
| 143 |
+
{(Number.isFinite(confidence) ? (confidence * 100).toFixed(1) : '0.0')}% Confidence
|
| 144 |
+
</Text>
|
| 145 |
+
</View>
|
| 146 |
+
)}
|
| 147 |
+
</View>
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
</ScrollView>
|
| 151 |
+
</SafeAreaView>
|
| 152 |
+
);
|
| 153 |
+
}
|
| 154 |
+
|
| 155 |
+
const styles = StyleSheet.create({
|
| 156 |
+
safeArea: {
|
| 157 |
+
flex: 1,
|
| 158 |
+
backgroundColor: '#f4f6f8',
|
| 159 |
+
},
|
| 160 |
+
container: {
|
| 161 |
+
flexGrow: 1,
|
| 162 |
+
padding: 22,
|
| 163 |
+
alignItems: 'center',
|
| 164 |
+
justifyContent: 'center',
|
| 165 |
+
},
|
| 166 |
+
header: {
|
| 167 |
+
alignItems: 'center',
|
| 168 |
+
marginBottom: 18,
|
| 169 |
+
},
|
| 170 |
+
title: {
|
| 171 |
+
fontSize: 44,
|
| 172 |
+
fontWeight: '800',
|
| 173 |
+
color: '#243447',
|
| 174 |
+
letterSpacing: 1,
|
| 175 |
+
},
|
| 176 |
+
subtitle: {
|
| 177 |
+
fontSize: 16,
|
| 178 |
+
color: '#61707a',
|
| 179 |
+
marginTop: 6,
|
| 180 |
+
},
|
| 181 |
+
|
| 182 |
+
card: {
|
| 183 |
+
width: '100%',
|
| 184 |
+
backgroundColor: '#ffffff',
|
| 185 |
+
borderRadius: 16,
|
| 186 |
+
padding: 18,
|
| 187 |
+
// subtle shadow
|
| 188 |
+
...Platform.select({
|
| 189 |
+
ios: {
|
| 190 |
+
shadowColor: '#000',
|
| 191 |
+
shadowOpacity: 0.06,
|
| 192 |
+
shadowOffset: { width: 0, height: 6 },
|
| 193 |
+
shadowRadius: 12,
|
| 194 |
+
},
|
| 195 |
+
android: {
|
| 196 |
+
elevation: 4,
|
| 197 |
+
},
|
| 198 |
+
}),
|
| 199 |
+
},
|
| 200 |
+
|
| 201 |
+
input: {
|
| 202 |
+
width: '100%',
|
| 203 |
+
minHeight: 120,
|
| 204 |
+
maxHeight: 220,
|
| 205 |
+
borderRadius: 12,
|
| 206 |
+
borderWidth: 1,
|
| 207 |
+
borderColor: '#e6ecef',
|
| 208 |
+
padding: 14,
|
| 209 |
+
fontSize: 16,
|
| 210 |
+
backgroundColor: '#fbfdff',
|
| 211 |
+
color: '#243447',
|
| 212 |
+
},
|
| 213 |
+
|
| 214 |
+
button: {
|
| 215 |
+
marginTop: 14,
|
| 216 |
+
backgroundColor: '#3276d6',
|
| 217 |
+
paddingVertical: 13,
|
| 218 |
+
borderRadius: 12,
|
| 219 |
+
alignItems: 'center',
|
| 220 |
+
justifyContent: 'center',
|
| 221 |
+
},
|
| 222 |
+
buttonDisabled: {
|
| 223 |
+
opacity: 0.78,
|
| 224 |
+
},
|
| 225 |
+
buttonText: {
|
| 226 |
+
color: '#fff',
|
| 227 |
+
fontWeight: '700',
|
| 228 |
+
fontSize: 16,
|
| 229 |
+
letterSpacing: 0.3,
|
| 230 |
+
},
|
| 231 |
+
|
| 232 |
+
errorText: {
|
| 233 |
+
marginTop: 12,
|
| 234 |
+
color: '#e04444',
|
| 235 |
+
fontSize: 14,
|
| 236 |
+
textAlign: 'center',
|
| 237 |
+
},
|
| 238 |
+
|
| 239 |
+
resultContainer: {
|
| 240 |
+
marginTop: 18,
|
| 241 |
+
alignItems: 'center',
|
| 242 |
+
width: '100%',
|
| 243 |
+
paddingVertical: 14,
|
| 244 |
+
paddingHorizontal: 10,
|
| 245 |
+
borderRadius: 12,
|
| 246 |
+
backgroundColor: '#fcfeff',
|
| 247 |
+
borderWidth: 1,
|
| 248 |
+
borderColor: '#e9f0f6',
|
| 249 |
+
},
|
| 250 |
+
resultLabel: {
|
| 251 |
+
fontSize: 12,
|
| 252 |
+
color: '#6b7780',
|
| 253 |
+
fontWeight: '600',
|
| 254 |
+
letterSpacing: 1,
|
| 255 |
+
},
|
| 256 |
+
resultSentiment: {
|
| 257 |
+
fontSize: 30,
|
| 258 |
+
marginTop: 8,
|
| 259 |
+
fontWeight: '800',
|
| 260 |
+
},
|
| 261 |
+
|
| 262 |
+
confidenceBarBackground: {
|
| 263 |
+
width: '92%',
|
| 264 |
+
height: 10,
|
| 265 |
+
borderRadius: 6,
|
| 266 |
+
backgroundColor: '#eef3f7',
|
| 267 |
+
marginTop: 12,
|
| 268 |
+
overflow: 'hidden',
|
| 269 |
+
},
|
| 270 |
+
confidenceBarFill: {
|
| 271 |
+
height: '100%',
|
| 272 |
+
backgroundColor: '#46a0ff',
|
| 273 |
+
},
|
| 274 |
+
resultConfidence: {
|
| 275 |
+
marginTop: 10,
|
| 276 |
+
fontSize: 15,
|
| 277 |
+
color: '#34495e',
|
| 278 |
+
fontWeight: '600',
|
| 279 |
+
},
|
| 280 |
+
|
| 281 |
+
footer: {
|
| 282 |
+
marginTop: 18,
|
| 283 |
+
alignItems: 'center',
|
| 284 |
+
},
|
| 285 |
+
footerText: {
|
| 286 |
+
color: '#8b99a2',
|
| 287 |
+
fontSize: 13,
|
| 288 |
+
},
|
| 289 |
+
code: {
|
| 290 |
+
fontFamily: Platform.select({ ios: 'Menlo', android: 'monospace' }),
|
| 291 |
+
backgroundColor: '#eef6ff',
|
| 292 |
+
paddingHorizontal: 6,
|
| 293 |
+
paddingVertical: 2,
|
| 294 |
+
borderRadius: 4,
|
| 295 |
+
color: '#2a6fdb',
|
| 296 |
+
},
|
| 297 |
+
});
|
texior-app/app.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"expo": {
|
| 3 |
+
"name": "texior-app",
|
| 4 |
+
"slug": "texior-app",
|
| 5 |
+
"version": "1.0.0",
|
| 6 |
+
"orientation": "portrait",
|
| 7 |
+
"icon": "./assets/icon.png",
|
| 8 |
+
"userInterfaceStyle": "light",
|
| 9 |
+
"newArchEnabled": true,
|
| 10 |
+
"splash": {
|
| 11 |
+
"image": "./assets/splash-icon.png",
|
| 12 |
+
"resizeMode": "contain",
|
| 13 |
+
"backgroundColor": "#ffffff"
|
| 14 |
+
},
|
| 15 |
+
"ios": {
|
| 16 |
+
"supportsTablet": true
|
| 17 |
+
},
|
| 18 |
+
"android": {
|
| 19 |
+
"adaptiveIcon": {
|
| 20 |
+
"foregroundImage": "./assets/adaptive-icon.png",
|
| 21 |
+
"backgroundColor": "#ffffff"
|
| 22 |
+
},
|
| 23 |
+
"edgeToEdgeEnabled": true
|
| 24 |
+
},
|
| 25 |
+
"web": {
|
| 26 |
+
"favicon": "./assets/favicon.png"
|
| 27 |
+
}
|
| 28 |
+
}
|
| 29 |
+
}
|
texior-app/assets/adaptive-icon.png
ADDED
|
|
texior-app/assets/favicon.png
ADDED
|
|
texior-app/assets/icon.png
ADDED
|
|
texior-app/assets/splash-icon.png
ADDED
|
|
texior-app/index.js
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import { registerRootComponent } from 'expo';
|
| 2 |
+
|
| 3 |
+
import App from './App';
|
| 4 |
+
|
| 5 |
+
// registerRootComponent calls AppRegistry.registerComponent('main', () => App);
|
| 6 |
+
// It also ensures that whether you load the app in Expo Go or in a native build,
|
| 7 |
+
// the environment is set up appropriately
|
| 8 |
+
registerRootComponent(App);
|
texior-app/package-lock.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
texior-app/package.json
ADDED
|
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"name": "texior-app",
|
| 3 |
+
"license": "0BSD",
|
| 4 |
+
"version": "1.0.0",
|
| 5 |
+
"main": "index.js",
|
| 6 |
+
"scripts": {
|
| 7 |
+
"start": "expo start",
|
| 8 |
+
"android": "expo start --android",
|
| 9 |
+
"ios": "expo start --ios",
|
| 10 |
+
"web": "expo start --web"
|
| 11 |
+
},
|
| 12 |
+
"dependencies": {
|
| 13 |
+
"expo": "~54.0.12",
|
| 14 |
+
"expo-status-bar": "~3.0.8",
|
| 15 |
+
"react": "19.1.0",
|
| 16 |
+
"react-dom": "19.1.0",
|
| 17 |
+
"react-native": "0.81.4",
|
| 18 |
+
"react-native-linear-gradient": "^2.8.3",
|
| 19 |
+
"react-native-web": "^0.21.0"
|
| 20 |
+
},
|
| 21 |
+
"private": true
|
| 22 |
+
}
|