File size: 7,115 Bytes
5f028d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import torch


def replace_constant(minibatch_pose_input, mask_start_frame):

    seq_len = minibatch_pose_input.size(1)
    interpolated = (
        torch.ones_like(minibatch_pose_input, device=minibatch_pose_input.device) * 0.1
    )

    if mask_start_frame == 0 or mask_start_frame == (seq_len - 1):
        interpolate_start = minibatch_pose_input[:, 0, :]
        interpolate_end = minibatch_pose_input[:, seq_len - 1, :]

        interpolated[:, 0, :] = interpolate_start
        interpolated[:, seq_len - 1, :] = interpolate_end

        assert torch.allclose(interpolated[:, 0, :], interpolate_start)
        assert torch.allclose(interpolated[:, seq_len - 1, :], interpolate_end)

    else:
        interpolate_start1 = minibatch_pose_input[:, 0, :]
        interpolate_end1 = minibatch_pose_input[:, mask_start_frame, :]

        interpolate_start2 = minibatch_pose_input[:, mask_start_frame, :]
        interpolate_end2 = minibatch_pose_input[:, seq_len - 1, :]

        interpolated[:, 0, :] = interpolate_start1
        interpolated[:, mask_start_frame, :] = interpolate_end1

        interpolated[:, mask_start_frame, :] = interpolate_start2
        interpolated[:, seq_len - 1, :] = interpolate_end2

        assert torch.allclose(interpolated[:, 0, :], interpolate_start1)
        assert torch.allclose(interpolated[:, mask_start_frame, :], interpolate_end1)

        assert torch.allclose(interpolated[:, mask_start_frame, :], interpolate_start2)
        assert torch.allclose(interpolated[:, seq_len - 1, :], interpolate_end2)
    return interpolated


def slerp(x, y, a):
    """
    Perfroms spherical linear interpolation (SLERP) between x and y, with proportion a

    :param x: quaternion tensor
    :param y: quaternion tensor
    :param a: indicator (between 0 and 1) of completion of the interpolation.
    :return: tensor of interpolation results
    """
    device = x.device
    len = torch.sum(x * y, dim=-1)

    neg = len < 0.0
    len[neg] = -len[neg]
    y[neg] = -y[neg]

    a = torch.zeros_like(x[..., 0]) + a
    amount0 = torch.zeros(a.shape, device=device)
    amount1 = torch.zeros(a.shape, device=device)

    linear = (1.0 - len) < 0.01
    omegas = torch.arccos(len[~linear])
    sinoms = torch.sin(omegas)

    amount0[linear] = 1.0 - a[linear]
    amount0[~linear] = torch.sin((1.0 - a[~linear]) * omegas) / sinoms

    amount1[linear] = a[linear]
    amount1[~linear] = torch.sin(a[~linear] * omegas) / sinoms
    # res = amount0[..., np.newaxis] * x + amount1[..., np.newaxis] * y
    res = amount0.unsqueeze(3) * x + amount1.unsqueeze(3) * y

    return res


def slerp_input_repr(minibatch_pose_input, mask_start_frame):
    seq_len = minibatch_pose_input.size(1)
    minibatch_pose_input = minibatch_pose_input.reshape(
        minibatch_pose_input.size(0), seq_len, -1, 4
    )
    interpolated = torch.zeros_like(
        minibatch_pose_input, device=minibatch_pose_input.device
    )

    if mask_start_frame == 0 or mask_start_frame == (seq_len - 1):
        interpolate_start = minibatch_pose_input[:, 0:1]
        interpolate_end = minibatch_pose_input[:, seq_len - 1 :]

        for i in range(seq_len):
            dt = 1 / (seq_len - 1)
            interpolated[:, i : i + 1, :] = slerp(
                interpolate_start, interpolate_end, dt * i
            )

        assert torch.allclose(interpolated[:, 0:1], interpolate_start)
        assert torch.allclose(interpolated[:, seq_len - 1 :], interpolate_end)
    else:
        interpolate_start1 = minibatch_pose_input[:, 0:1]
        interpolate_end1 = minibatch_pose_input[
            :, mask_start_frame : mask_start_frame + 1
        ]

        interpolate_start2 = minibatch_pose_input[
            :, mask_start_frame : mask_start_frame + 1
        ]
        interpolate_end2 = minibatch_pose_input[:, seq_len - 1 :]

        for i in range(mask_start_frame + 1):
            dt = 1 / mask_start_frame
            interpolated[:, i : i + 1, :] = slerp(
                interpolate_start1, interpolate_end1, dt * i
            )

        assert torch.allclose(interpolated[:, 0:1], interpolate_start1)
        assert torch.allclose(
            interpolated[:, mask_start_frame : mask_start_frame + 1], interpolate_end1
        )

        for i in range(mask_start_frame, seq_len):
            dt = 1 / (seq_len - mask_start_frame - 1)
            interpolated[:, i : i + 1, :] = slerp(
                interpolate_start2, interpolate_end2, dt * (i - mask_start_frame)
            )

        assert torch.allclose(
            interpolated[:, mask_start_frame : mask_start_frame + 1], interpolate_start2
        )
        assert torch.allclose(interpolated[:, seq_len - 1 :], interpolate_end2)

    interpolated = torch.nn.functional.normalize(interpolated, p=2.0, dim=3)
    return interpolated.reshape(minibatch_pose_input.size(0), seq_len, -1)


def lerp_input_repr(minibatch_pose_input, mask_start_frame):
    seq_len = minibatch_pose_input.size(1)
    interpolated = torch.zeros_like(
        minibatch_pose_input, device=minibatch_pose_input.device
    )

    if mask_start_frame == 0 or mask_start_frame == (seq_len - 1):
        interpolate_start = minibatch_pose_input[:, 0, :]
        interpolate_end = minibatch_pose_input[:, seq_len - 1, :]

        for i in range(seq_len):
            dt = 1 / (seq_len - 1)
            interpolated[:, i, :] = torch.lerp(
                interpolate_start, interpolate_end, dt * i
            )

        assert torch.allclose(interpolated[:, 0, :], interpolate_start)
        assert torch.allclose(interpolated[:, seq_len - 1, :], interpolate_end)
    else:
        interpolate_start1 = minibatch_pose_input[:, 0, :]
        interpolate_end1 = minibatch_pose_input[:, mask_start_frame, :]

        interpolate_start2 = minibatch_pose_input[:, mask_start_frame, :]
        interpolate_end2 = minibatch_pose_input[:, -1, :]

        for i in range(mask_start_frame + 1):
            dt = 1 / mask_start_frame
            interpolated[:, i, :] = torch.lerp(
                interpolate_start1, interpolate_end1, dt * i
            )

        assert torch.allclose(interpolated[:, 0, :], interpolate_start1)
        assert torch.allclose(interpolated[:, mask_start_frame, :], interpolate_end1)

        for i in range(mask_start_frame, seq_len):
            dt = 1 / (seq_len - mask_start_frame - 1)
            interpolated[:, i, :] = torch.lerp(
                interpolate_start2, interpolate_end2, dt * (i - mask_start_frame)
            )

        assert torch.allclose(interpolated[:, mask_start_frame, :], interpolate_start2)
        assert torch.allclose(interpolated[:, -1, :], interpolate_end2)
    return interpolated


def vectorize_representation(global_position, global_rotation):

    batch_size = global_position.shape[0]
    seq_len = global_position.shape[1]

    global_pos_vec = global_position.reshape(batch_size, seq_len, -1).contiguous()
    global_rot_vec = global_rotation.reshape(batch_size, seq_len, -1).contiguous()

    global_pose_vec_gt = torch.cat([global_pos_vec, global_rot_vec], dim=2)
    return global_pose_vec_gt