File size: 14,013 Bytes
b7eedf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import os
import json
import torch
import torchvision.transforms as transforms
import os.path
import numpy as np
import cv2
from torch.utils.data import Dataset
import random
from .__base_dataset__ import BaseDataset


class ScanNetDataset(BaseDataset):
    def __init__(self, cfg, phase, **kwargs):
        super(ScanNetDataset, self).__init__(
            cfg=cfg,
            phase=phase,
            **kwargs)
        self.metric_scale = cfg.metric_scale
    
    # def get_data_for_test(self, idx):
    #     anno = self.annotations['files'][idx]
    #     curr_rgb_path = os.path.join(self.data_root, anno['rgb'])
    #     curr_depth_path = os.path.join(self.depth_root, anno['depth'])
    #     meta_data = self.load_meta_data(anno)
    #     ori_curr_intrinsic = meta_data['cam_in']
        
    #     curr_rgb, curr_depth = self.load_rgb_depth(curr_rgb_path, curr_depth_path)
    #     # curr_rgb = cv2.resize(curr_rgb, dsize=(640, 480), interpolation=cv2.INTER_LINEAR)
    #     ori_h, ori_w, _ = curr_rgb.shape
    #     # create camera model
    #     curr_cam_model = self.create_cam_model(curr_rgb.shape[0], curr_rgb.shape[1], ori_curr_intrinsic)
    #     # load tmpl rgb info
    #     # tmpl_annos = self.load_tmpl_annos(anno, curr_rgb, meta_data)
    #     # tmpl_rgb = tmpl_annos['tmpl_rgb_list'] # list of reference rgbs

    #     transform_paras = dict()
    #     rgbs, depths, intrinsics, cam_models, _,  other_labels, transform_paras = self.img_transforms(
    #                                                                images=[curr_rgb, ], 
    #                                                                labels=[curr_depth, ], 
    #                                                                intrinsics=[ori_curr_intrinsic,], 
    #                                                                cam_models=[curr_cam_model, ],
    #                                                                transform_paras=transform_paras)
    #     # depth in original size
    #     depth_out = self.clip_depth(curr_depth) * self.depth_range[1]

    #     filename = os.path.basename(anno['rgb'])
    #     curr_intrinsic_mat = self.intrinsics_list2mat(intrinsics[0])

    #     pad = transform_paras['pad'] if 'pad' in transform_paras else [0,0,0,0]
    #     scale_ratio = transform_paras['label_scale_factor'] if 'label_scale_factor' in transform_paras else 1.0
    #     cam_models_stacks = [
    #         torch.nn.functional.interpolate(cam_models[0][None, :, :, :], size=(cam_models[0].shape[1]//i, cam_models[0].shape[2]//i), mode='bilinear', align_corners=False).squeeze()
    #         for i in [2, 4, 8, 16, 32] 
    #         ]    
    #     raw_rgb = torch.from_numpy(curr_rgb)
    #     data = dict(input=rgbs[0],
    #                 target=depth_out,
    #                 intrinsic=curr_intrinsic_mat,
    #                 filename=filename,
    #                 dataset=self.data_name,
    #                 cam_model=cam_models_stacks,
    #                 ref_input=rgbs[1:],
    #                 tmpl_flg=False,
    #                 pad=pad,
    #                 scale=scale_ratio,
    #                 raw_rgb=raw_rgb,
    #                 normal =np.zeros_like(curr_rgb.transpose((2,0,1))),
    #     ) 
    #     return data

    def get_data_for_test(self, idx: int, test_mode=True):
        anno = self.annotations['files'][idx]
        meta_data = self.load_meta_data(anno)
        data_path = self.load_data_path(meta_data)
        data_batch = self.load_batch(meta_data, data_path, test_mode)
        # load data
        curr_rgb, curr_depth, curr_normal, curr_cam_model = data_batch['curr_rgb'], data_batch['curr_depth'], data_batch['curr_normal'], data_batch['curr_cam_model']
        ori_curr_intrinsic = meta_data['cam_in']

        # get crop size
        transform_paras = dict()
        rgbs, depths, intrinsics, cam_models, _, other_labels, transform_paras = self.img_transforms(
                                                                   images=[curr_rgb,],  #+ tmpl_rgbs, 
                                                                   labels=[curr_depth, ], 
                                                                   intrinsics=[ori_curr_intrinsic, ], # * (len(tmpl_rgbs) + 1), 
                                                                   cam_models=[curr_cam_model, ],
                                                                   transform_paras=transform_paras)
        # depth in original size and orignial metric***
        depth_out = self.clip_depth(curr_depth) * self.depth_range[1] # self.clip_depth(depths[0]) #
        inv_depth = self.depth2invdepth(depth_out, np.zeros_like(depth_out, dtype=np.bool))
        filename = os.path.basename(meta_data['rgb'])[:-4] + '.jpg'
        curr_intrinsic_mat = self.intrinsics_list2mat(intrinsics[0])

        pad = transform_paras['pad'] if 'pad' in transform_paras else [0,0,0,0]
        scale_ratio = transform_paras['label_scale_factor'] if 'label_scale_factor' in transform_paras else 1.0
        cam_models_stacks = [
            torch.nn.functional.interpolate(cam_models[0][None, :, :, :], size=(cam_models[0].shape[1]//i, cam_models[0].shape[2]//i), mode='bilinear', align_corners=False).squeeze()
            for i in [2, 4, 8, 16, 32] 
            ]    
        raw_rgb = torch.from_numpy(curr_rgb)
        curr_normal = torch.from_numpy(curr_normal.transpose((2,0,1)))
        

        data = dict(input=rgbs[0],
                    target=depth_out,
                    intrinsic=curr_intrinsic_mat,
                    filename=filename,
                    dataset=self.data_name,
                    cam_model=cam_models_stacks,
                    pad=pad,
                    scale=scale_ratio,
                    raw_rgb=raw_rgb,
                    sample_id=idx,
                    data_path=meta_data['rgb'],
                    inv_depth=inv_depth,
                    normal=curr_normal,
                    )
        return data   

    def get_data_for_trainval(self, idx: int):
        anno = self.annotations['files'][idx]
        meta_data = self.load_meta_data(anno)
        
        data_path = self.load_data_path(meta_data)
        data_batch = self.load_batch(meta_data, data_path, test_mode=False)

        # if data_path['sem_path'] is not None:
        #     print(self.data_name)

        curr_rgb, curr_depth, curr_normal, curr_sem, curr_cam_model = data_batch['curr_rgb'], data_batch['curr_depth'], data_batch['curr_normal'], data_batch['curr_sem'], data_batch['curr_cam_model']
        #curr_stereo_depth = data_batch['curr_stereo_depth']
        
        # A patch for stereo depth dataloader (no need to modify specific datasets)
        if 'curr_stereo_depth' in data_batch.keys():
            curr_stereo_depth = data_batch['curr_stereo_depth']
        else:
            curr_stereo_depth = self.load_stereo_depth_label(None, H=curr_rgb.shape[0], W=curr_rgb.shape[1]) 

        curr_intrinsic = meta_data['cam_in']
        # data augmentation
        transform_paras = dict(random_crop_size = self.random_crop_size) # dict() 
        assert curr_rgb.shape[:2] == curr_depth.shape == curr_normal.shape[:2] == curr_sem.shape
        rgbs, depths, intrinsics, cam_models, normals, other_labels, transform_paras = self.img_transforms(
                                                                   images=[curr_rgb, ], 
                                                                   labels=[curr_depth, ], 
                                                                   intrinsics=[curr_intrinsic,], 
                                                                   cam_models=[curr_cam_model, ],
                                                                   normals = [curr_normal, ],
                                                                   other_labels=[curr_sem, curr_stereo_depth],
                                                                   transform_paras=transform_paras)
        # process sky masks
        sem_mask = other_labels[0].int()
        # clip depth map 
        depth_out = self.normalize_depth(depths[0])
        # set the depth of sky region to the invalid
        depth_out[sem_mask==142] = -1 # self.depth_normalize[1] - 1e-6
        # get inverse depth
        inv_depth = self.depth2invdepth(depth_out, sem_mask==142)
        filename = os.path.basename(meta_data['rgb'])[:-4] + '.jpg'
        curr_intrinsic_mat = self.intrinsics_list2mat(intrinsics[0])
        cam_models_stacks = [
            torch.nn.functional.interpolate(cam_models[0][None, :, :, :], size=(cam_models[0].shape[1]//i, cam_models[0].shape[2]//i), mode='bilinear', align_corners=False).squeeze()
            for i in [2, 4, 8, 16, 32] 
            ]

        # stereo_depth 
        stereo_depth_pre_trans = other_labels[1] * (other_labels[1] > 0.3) * (other_labels[1] < 200)
        stereo_depth = stereo_depth_pre_trans * transform_paras['label_scale_factor']
        stereo_depth = self.normalize_depth(stereo_depth)

        pad = transform_paras['pad'] if 'pad' in transform_paras else [0,0,0,0]        
        data = dict(input=rgbs[0],
                    target=depth_out,
                    intrinsic=curr_intrinsic_mat,
                    filename=filename,
                    dataset=self.data_name,
                    cam_model=cam_models_stacks,
                    pad=torch.tensor(pad),
                    data_type=[self.data_type, ],
                    sem_mask=sem_mask.int(),
                    stereo_depth= stereo_depth,
                    normal=normals[0],
                    inv_depth=inv_depth,
                    scale=transform_paras['label_scale_factor'])
        return data

    def load_batch(self, meta_data, data_path, test_mode):

        # print('############')
        # print(data_path['rgb_path'])
        # print(data_path['normal_path'])
        # print('############')

        curr_intrinsic = meta_data['cam_in']
        # load rgb/depth
        curr_rgb, curr_depth = self.load_rgb_depth(data_path['rgb_path'], data_path['depth_path'], test_mode)
        # get semantic labels
        curr_sem = self.load_sem_label(data_path['sem_path'], curr_depth)
        # create camera model
        curr_cam_model = self.create_cam_model(curr_rgb.shape[0], curr_rgb.shape[1], curr_intrinsic)       
        # get normal labels
        curr_normal = self.load_norm_label(data_path['normal_path'], H=curr_rgb.shape[0], W=curr_rgb.shape[1], test_mode=test_mode) 
        # get depth mask
        depth_mask = self.load_depth_valid_mask(data_path['depth_mask_path'])
        curr_depth[~depth_mask] = -1
        # get stereo depth
        curr_stereo_depth = self.load_stereo_depth_label(data_path['disp_path'], H=curr_rgb.shape[0], W=curr_rgb.shape[1]) 

        data_batch = dict(
            curr_rgb = curr_rgb,
            curr_depth = curr_depth,
            curr_sem = curr_sem,
            curr_normal = curr_normal,
            curr_cam_model=curr_cam_model,
            curr_stereo_depth=curr_stereo_depth,
        )
        return data_batch

    def load_rgb_depth(self, rgb_path: str, depth_path: str, test_mode: bool):
        """
        Load the rgb and depth map with the paths.
        """
        rgb = self.load_data(rgb_path, is_rgb_img=True)
        if rgb is None:
            self.logger.info(f'>>>>{rgb_path} has errors.')
       
        depth = self.load_data(depth_path)
        if depth is None:
            self.logger.info(f'{depth_path} has errors.')
        
        # self.check_data(dict(
        #     rgb_path=rgb,
        #     depth_path=depth,
        # ))
        depth = depth.astype(np.float)
        # if depth.shape != rgb.shape[:2]:
        #     print(f'no-equal in {self.data_name}')
        #     depth = cv2.resize(depth, rgb.shape[::-1][1:])
        
        depth  = self.process_depth(depth, rgb, test_mode)
        return rgb, depth
    
    def process_depth(self, depth, rgb, test_mode=False):
        depth[depth>65500] = 0
        depth /= self.metric_scale
        h, w, _ = rgb.shape # to rgb size
        if test_mode==False:
            depth = cv2.resize(depth, (w, h), interpolation=cv2.INTER_NEAREST)
        return depth

    def load_norm_label(self, norm_path, H, W, test_mode):
        
        if norm_path is None:
            norm_gt = np.zeros((H, W, 3)).astype(np.float32)
        else:
            norm_gt = cv2.imread(norm_path)
            norm_gt = cv2.cvtColor(norm_gt, cv2.COLOR_BGR2RGB) 

            norm_gt = np.array(norm_gt).astype(np.uint8)

            mask_path = 'orient-mask'.join(norm_path.rsplit('normal', 1))
            mask_gt = cv2.imread(mask_path)
            mask_gt = np.array(mask_gt).astype(np.uint8)
            valid_mask = np.logical_not(
                np.logical_and(
                    np.logical_and(
                        mask_gt[:, :, 0] == 0, mask_gt[:, :, 1] == 0),
                    mask_gt[:, :, 2] == 0))
            valid_mask = valid_mask[:, :, np.newaxis]

            # norm_valid_mask = np.logical_not(
            #     np.logical_and(
            #         np.logical_and(
            #             norm_gt[:, :, 0] == 0, norm_gt[:, :, 1] == 0),
            #         norm_gt[:, :, 2] == 0))
            # norm_valid_mask = norm_valid_mask[:, :, np.newaxis]

            norm_gt = ((norm_gt.astype(np.float32) / 255.0) * 2.0) - 1.0
            norm_valid_mask = (np.linalg.norm(norm_gt, axis=2, keepdims=True) > 0.5) * valid_mask
            norm_gt = norm_gt * norm_valid_mask

            if test_mode==False:
                norm_gt = cv2.resize(norm_gt, (W, H), interpolation=cv2.INTER_NEAREST)
            
        return norm_gt   



if __name__ == '__main__':
    from mmcv.utils import Config 
    cfg = Config.fromfile('mono/configs/Apolloscape_DDAD/convnext_base.cascade.1m.sgd.mae.py')
    dataset_i = NYUDataset(cfg['Apolloscape'], 'train', **cfg.data_basic)
    print(dataset_i)