ThunderVVV's picture
add thirdparty
b7eedf7
import os
import json
import torch
import torchvision.transforms as transforms
import os.path
import numpy as np
import cv2
from torch.utils.data import Dataset
import random
from .__base_dataset__ import BaseDataset
def creat_uv_mesh(H, W):
y, x = np.meshgrid(np.arange(0, H, dtype=np.float), np.arange(0, W, dtype=np.float), indexing='ij')
meshgrid = np.stack((x,y))
ones = np.ones((1,H*W), dtype=np.float)
xy = meshgrid.reshape(2, -1)
return np.concatenate([xy, ones], axis=0)
class DIODEDataset(BaseDataset):
def __init__(self, cfg, phase, **kwargs):
super(DIODEDataset, self).__init__(
cfg=cfg,
phase=phase,
**kwargs)
self.metric_scale = cfg.metric_scale
# meshgrid for depth reprojection
self.xy = creat_uv_mesh(768, 1024)
def get_data_for_test(self, idx: int):
anno = self.annotations['files'][idx]
meta_data = self.load_meta_data(anno)
data_path = self.load_data_path(meta_data)
data_batch = self.load_batch(meta_data, data_path)
# load data
curr_rgb, curr_depth, curr_normal, curr_cam_model = data_batch['curr_rgb'], data_batch['curr_depth'], data_batch['curr_normal'], data_batch['curr_cam_model']
ori_curr_intrinsic = meta_data['cam_in']
# get crop size
transform_paras = dict()
rgbs, depths, intrinsics, cam_models, _, other_labels, transform_paras = self.img_transforms(
images=[curr_rgb,], #+ tmpl_rgbs,
labels=[curr_depth, ],
intrinsics=[ori_curr_intrinsic, ], # * (len(tmpl_rgbs) + 1),
cam_models=[curr_cam_model, ],
transform_paras=transform_paras)
# depth in original size and orignial metric***
depth_out = self.clip_depth(curr_depth) * self.depth_range[1] # self.clip_depth(depths[0]) #
inv_depth = self.depth2invdepth(depth_out, np.zeros_like(depth_out, dtype=np.bool))
filename = os.path.basename(meta_data['rgb'])[:-4] + '.jpg'
curr_intrinsic_mat = self.intrinsics_list2mat(intrinsics[0])
ori_curr_intrinsic_mat = self.intrinsics_list2mat(ori_curr_intrinsic)
pad = transform_paras['pad'] if 'pad' in transform_paras else [0,0,0,0]
scale_ratio = transform_paras['label_scale_factor'] if 'label_scale_factor' in transform_paras else 1.0
cam_models_stacks = [
torch.nn.functional.interpolate(cam_models[0][None, :, :, :], size=(cam_models[0].shape[1]//i, cam_models[0].shape[2]//i), mode='bilinear', align_corners=False).squeeze()
for i in [2, 4, 8, 16, 32]
]
raw_rgb = torch.from_numpy(curr_rgb)
curr_normal = torch.from_numpy(curr_normal.transpose((2,0,1)))
data = dict(input=rgbs[0],
target=depth_out,
intrinsic=curr_intrinsic_mat,
filename=filename,
dataset=self.data_name,
cam_model=cam_models_stacks,
pad=pad,
scale=scale_ratio,
raw_rgb=raw_rgb,
sample_id=idx,
data_path=meta_data['rgb'],
inv_depth=inv_depth,
normal=curr_normal,
)
return data
# def get_data_for_trainval(self, idx: int):
# anno = self.annotations['files'][idx]
# meta_data = self.load_meta_data(anno)
# # curr_rgb_path = os.path.join(self.data_root, meta_data['rgb'])
# # curr_depth_path = os.path.join(self.depth_root, meta_data['depth'])
# # curr_sem_path = os.path.join(self.sem_root, meta_data['sem']) if self.sem_root is not None and ('sem' in meta_data) and (meta_data['sem'] is not None) else None
# # curr_depth_mask_path = os.path.join(self.depth_mask_root, meta_data['depth_mask']) if self.depth_mask_root is not None and ('depth_mask' in meta_data) and (meta_data['depth_mask'] is not None) else None
# data_path = self.load_data_path(meta_data)
# data_batch = self.load_batch(meta_data, data_path)
# curr_rgb, curr_depth, curr_normal, curr_sem, curr_cam_model = data_batch['curr_rgb'], data_batch['curr_depth'], data_batch['curr_normal'], data_batch['curr_sem'], data_batch['curr_cam_model']
# # load data
# # curr_intrinsic = meta_data['cam_in']
# # curr_rgb, curr_depth = self.load_rgb_depth(curr_rgb_path, curr_depth_path)
# # # mask the depth
# # curr_depth = curr_depth.squeeze()
# # depth_mask = self.load_depth_valid_mask(curr_depth_mask_path, curr_depth)
# # curr_depth[~depth_mask] = -1
# # # get semantic labels
# # curr_sem = self.load_sem_label(curr_sem_path, curr_depth)
# # # create camera model
# # curr_cam_model = self.create_cam_model(curr_rgb.shape[0], curr_rgb.shape[1], curr_intrinsic)
# # get crop size
# transform_paras = dict(random_crop_size = self.random_crop_size)
# rgbs, depths, intrinsics, cam_models, _, other_labels, transform_paras = self.img_transforms(
# images=[curr_rgb, ],
# labels=[curr_depth, ],
# intrinsics=[curr_intrinsic,],
# cam_models=[curr_cam_model, ],
# other_labels=[curr_sem, ],
# transform_paras=transform_paras)
# # process sky masks
# sem_mask = other_labels[0].int()
# # clip depth map
# depth_out = self.normalize_depth(depths[0])
# # set the depth in sky region to the maximum depth
# depth_out[sem_mask==142] = -1 #self.depth_normalize[1] - 1e-6
# filename = os.path.basename(meta_data['rgb'])
# curr_intrinsic_mat = self.intrinsics_list2mat(intrinsics[0])
# cam_models_stacks = [
# torch.nn.functional.interpolate(cam_models[0][None, :, :, :], size=(cam_models[0].shape[1]//i, cam_models[0].shape[2]//i), mode='bilinear', align_corners=False).squeeze()
# for i in [2, 4, 8, 16, 32]
# ]
# pad = transform_paras['pad'] if 'pad' in transform_paras else [0,0,0,0]
# data = dict(input=rgbs[0],
# target=depth_out,
# intrinsic=curr_intrinsic_mat,
# filename=filename,
# dataset=self.data_name,
# cam_model=cam_models_stacks,
# #ref_input=rgbs[1:],
# # tmpl_flg=tmpl_annos['w_tmpl'],
# pad=torch.tensor(pad),
# data_type=[self.data_type, ],
# sem_mask=sem_mask.int())
# return data
# def get_data_for_test(self, idx: int):
# anno = self.annotations['files'][idx]
# meta_data = self.load_meta_data(anno)
# curr_rgb_path = os.path.join(self.data_root, meta_data['rgb'])
# curr_depth_path = os.path.join(self.depth_root, meta_data['depth'])
# curr_depth_mask_path = os.path.join(self.depth_mask_root, meta_data['depth_mask']) if self.depth_mask_root is not None and ('depth_mask' in meta_data) and (meta_data['depth_mask'] is not None) else None
# # load data
# ori_curr_intrinsic = meta_data['cam_in']
# curr_rgb, curr_depth = self.load_rgb_depth(curr_rgb_path, curr_depth_path)
# # mask the depth
# curr_depth = curr_depth.squeeze()
# depth_mask = self.load_depth_valid_mask(curr_depth_mask_path, curr_depth)
# curr_depth[~depth_mask] = -1
# ori_h, ori_w, _ = curr_rgb.shape
# # create camera model
# curr_cam_model = self.create_cam_model(curr_rgb.shape[0], curr_rgb.shape[1], ori_curr_intrinsic)
# # get crop size
# transform_paras = dict()
# rgbs, depths, intrinsics, cam_models, _, other_labels, transform_paras = self.img_transforms(
# images=[curr_rgb,], #+ tmpl_rgbs,
# labels=[curr_depth, ],
# intrinsics=[ori_curr_intrinsic, ], # * (len(tmpl_rgbs) + 1),
# cam_models=[curr_cam_model, ],
# transform_paras=transform_paras)
# # depth in original size and orignial metric***
# depth_out = self.clip_depth(curr_depth) * self.depth_range[1] # self.clip_depth(depths[0]) #
# filename = os.path.basename(meta_data['rgb'])
# curr_intrinsic_mat = self.intrinsics_list2mat(intrinsics[0])
# pad = transform_paras['pad'] if 'pad' in transform_paras else [0,0,0,0]
# scale_ratio = transform_paras['label_scale_factor'] if 'label_scale_factor' in transform_paras else 1.0
# cam_models_stacks = [
# torch.nn.functional.interpolate(cam_models[0][None, :, :, :], size=(cam_models[0].shape[1]//i, cam_models[0].shape[2]//i), mode='bilinear', align_corners=False).squeeze()
# for i in [2, 4, 8, 16, 32]
# ]
# raw_rgb = torch.from_numpy(curr_rgb)
# # rel_pose = torch.from_numpy(tmpl_annos['tmpl_pose_list'][0])
# data = dict(input=rgbs[0],
# target=depth_out,
# intrinsic=curr_intrinsic_mat,
# filename=filename,
# dataset=self.data_name,
# cam_model=cam_models_stacks,
# pad=pad,
# scale=scale_ratio,
# raw_rgb=raw_rgb,
# sample_id=idx,
# data_path=meta_data['rgb'],
# )
# return data
def load_batch(self, meta_data, data_path):
curr_intrinsic = meta_data['cam_in']
# load rgb/depth
curr_rgb, curr_depth = self.load_rgb_depth(data_path['rgb_path'], data_path['depth_path'])
# get semantic labels
curr_sem = self.load_sem_label(data_path['sem_path'], curr_depth)
# create camera model
curr_cam_model = self.create_cam_model(curr_rgb.shape[0], curr_rgb.shape[1], curr_intrinsic)
# get normal labels
try:
curr_normal = self.load_norm_label(data_path['normal_path'], H=curr_rgb.shape[0], W=curr_rgb.shape[1], depth=curr_depth, K=curr_intrinsic) # !!! this is diff of BaseDataset
except:
curr_normal = np.zeros_like(curr_rgb)
# get depth mask
depth_mask = self.load_depth_valid_mask(data_path['depth_mask_path'])
curr_depth[~depth_mask] = -1
data_batch = dict(
curr_rgb = curr_rgb,
curr_depth = curr_depth,
curr_sem = curr_sem,
curr_normal = curr_normal,
curr_cam_model=curr_cam_model,
)
return data_batch
def load_norm_label(self, norm_path, H, W, depth, K):
normal = np.load(norm_path)
normal[:,:,1:] *= -1
normal = self.align_normal(normal, depth, K, H, W)
return normal
def process_depth(self, depth, rgb):
depth[depth>150] = 0
depth[depth<0.1] = 0
depth /= self.metric_scale
return depth
def align_normal(self, normal, depth, K, H, W):
# inv K
K = np.array([[K[0], 0 ,K[2]],
[0, K[1], K[3]],
[0, 0, 1]])
inv_K = np.linalg.inv(K)
# reprojection depth to camera points
if H == 768 and W == 1024:
xy = self.xy
else:
print('img size no-equal 768x1024')
xy = creat_uv_mesh(H, W)
points = np.matmul(inv_K[:3, :3], xy).reshape(3, H, W)
points = depth * points
points = points.transpose((1,2,0))
# align normal
orient_mask = np.sum(normal * points, axis=2) > 0
normal[orient_mask] *= -1
return normal
if __name__ == '__main__':
from mmcv.utils import Config
cfg = Config.fromfile('mono/configs/Apolloscape_DDAD/convnext_base.cascade.1m.sgd.mae.py')
dataset_i = DIODEDataset(cfg['Apolloscape'], 'train', **cfg.data_basic)
print(dataset_i)