ThunderVVV's picture
add thirdparty
b7eedf7
import os
import json
import torch
import torchvision.transforms as transforms
import os.path
import numpy as np
import cv2
from torch.utils.data import Dataset
import random
from .__base_dataset__ import BaseDataset
class FisheyeDataset(BaseDataset):
def __init__(self, cfg, phase, **kwargs):
super(FisheyeDataset, self).__init__(
cfg=cfg,
phase=phase,
**kwargs)
self.metric_scale = cfg.metric_scale
def load_data(self, path: str, is_rgb_img: bool=False):
if not os.path.exists(path):
self.logger.info(f'>>>>{path} does not exist.')
# raise RuntimeError(f'{path} does not exist.')
data_type = os.path.splitext(path)[-1]
if data_type in self.img_file_type:
if is_rgb_img:
data = cv2.imread(path)
else:
data = cv2.imread(path, -1)
data[data>65500] = 0
data &= 0x7FFF
elif data_type in self.np_file_type:
data = np.load(path)
else:
raise RuntimeError(f'{data_type} is not supported in current version.')
return data.squeeze()
def load_batch(self, meta_data, data_path):
curr_intrinsic = meta_data['cam_in']
# load rgb/depth
curr_rgb, curr_depth = self.load_rgb_depth(data_path['rgb_path'], data_path['depth_path'])
# get semantic labels
curr_sem = self.load_sem_label(data_path['sem_path'], curr_depth)
# create camera model
curr_cam_model = self.create_cam_model(curr_rgb.shape[0], curr_rgb.shape[1], curr_intrinsic)
# get normal labels
curr_normal = self.load_norm_label(data_path['normal_path'], H=curr_rgb.shape[0], W=curr_rgb.shape[1])
# get depth mask
depth_mask = self.load_depth_valid_mask(data_path['depth_mask_path'])[:, :, :]
# with masks from andy
curr_depth[~(depth_mask[:, :, 0])] = -1
curr_rgb[~(depth_mask[:, :, :])] = 0
# get stereo depth
curr_stereo_depth = self.load_stereo_depth_label(data_path['disp_path'], H=curr_rgb.shape[0], W=curr_rgb.shape[1])
data_batch = dict(
curr_rgb = curr_rgb,
curr_depth = curr_depth,
curr_sem = curr_sem,
curr_normal = curr_normal,
curr_cam_model=curr_cam_model,
curr_stereo_depth=curr_stereo_depth,
)
return data_batch
def process_depth(self, depth, rgb):
depth /= self.metric_scale
return depth