Spaces:
Running
Running
import os | |
import json | |
import torch | |
import torchvision.transforms as transforms | |
import os.path | |
import numpy as np | |
import cv2 | |
from torch.utils.data import Dataset | |
import random | |
from .__base_dataset__ import BaseDataset | |
class FisheyeDataset(BaseDataset): | |
def __init__(self, cfg, phase, **kwargs): | |
super(FisheyeDataset, self).__init__( | |
cfg=cfg, | |
phase=phase, | |
**kwargs) | |
self.metric_scale = cfg.metric_scale | |
def load_data(self, path: str, is_rgb_img: bool=False): | |
if not os.path.exists(path): | |
self.logger.info(f'>>>>{path} does not exist.') | |
# raise RuntimeError(f'{path} does not exist.') | |
data_type = os.path.splitext(path)[-1] | |
if data_type in self.img_file_type: | |
if is_rgb_img: | |
data = cv2.imread(path) | |
else: | |
data = cv2.imread(path, -1) | |
data[data>65500] = 0 | |
data &= 0x7FFF | |
elif data_type in self.np_file_type: | |
data = np.load(path) | |
else: | |
raise RuntimeError(f'{data_type} is not supported in current version.') | |
return data.squeeze() | |
def load_batch(self, meta_data, data_path): | |
curr_intrinsic = meta_data['cam_in'] | |
# load rgb/depth | |
curr_rgb, curr_depth = self.load_rgb_depth(data_path['rgb_path'], data_path['depth_path']) | |
# get semantic labels | |
curr_sem = self.load_sem_label(data_path['sem_path'], curr_depth) | |
# create camera model | |
curr_cam_model = self.create_cam_model(curr_rgb.shape[0], curr_rgb.shape[1], curr_intrinsic) | |
# get normal labels | |
curr_normal = self.load_norm_label(data_path['normal_path'], H=curr_rgb.shape[0], W=curr_rgb.shape[1]) | |
# get depth mask | |
depth_mask = self.load_depth_valid_mask(data_path['depth_mask_path'])[:, :, :] | |
# with masks from andy | |
curr_depth[~(depth_mask[:, :, 0])] = -1 | |
curr_rgb[~(depth_mask[:, :, :])] = 0 | |
# get stereo depth | |
curr_stereo_depth = self.load_stereo_depth_label(data_path['disp_path'], H=curr_rgb.shape[0], W=curr_rgb.shape[1]) | |
data_batch = dict( | |
curr_rgb = curr_rgb, | |
curr_depth = curr_depth, | |
curr_sem = curr_sem, | |
curr_normal = curr_normal, | |
curr_cam_model=curr_cam_model, | |
curr_stereo_depth=curr_stereo_depth, | |
) | |
return data_batch | |
def process_depth(self, depth, rgb): | |
depth /= self.metric_scale | |
return depth | |