Spaces:
Running
Running
import os | |
import json | |
import torch | |
import torchvision.transforms as transforms | |
import os.path | |
import numpy as np | |
import cv2 | |
from PIL import Image | |
from torch.utils.data import Dataset | |
import random | |
from .__base_dataset__ import BaseDataset | |
class HM3DDataset(BaseDataset): | |
def __init__(self, cfg, phase, **kwargs): | |
super(HM3DDataset, self).__init__( | |
cfg=cfg, | |
phase=phase, | |
**kwargs) | |
self.metric_scale = cfg.metric_scale | |
#self.cap_range = self.depth_range # in meter | |
def load_norm_label(self, norm_path, H, W): | |
with open(norm_path, 'rb') as f: | |
normal = Image.open(f) | |
normal = np.array(normal.convert(normal.mode), dtype=np.uint8) | |
invalid_mask = np.all(normal == 128, axis=2) | |
normal = normal.astype(np.float64) / 255.0 * 2 - 1 | |
normal[invalid_mask, :] = 0 | |
return normal | |
def process_depth(self, depth: np.array, rgb: np.array) -> np.array: | |
depth[depth>60000] = 0 | |
depth = depth / self.metric_scale | |
return depth | |