Spaces:
Running
Running
import os | |
import json | |
import torch | |
import torchvision.transforms as transforms | |
import os.path | |
import numpy as np | |
import cv2 | |
from PIL import Image | |
from torch.utils.data import Dataset | |
import random | |
from .__base_dataset__ import BaseDataset | |
import pickle | |
class TaskonomyDataset(BaseDataset): | |
def __init__(self, cfg, phase, **kwargs): | |
super(TaskonomyDataset, self).__init__( | |
cfg=cfg, | |
phase=phase, | |
**kwargs) | |
self.metric_scale = cfg.metric_scale | |
#self.cap_range = self.depth_range # in meter | |
def __getitem__(self, idx: int) -> dict: | |
if self.phase == 'test': | |
return self.get_data_for_test(idx) | |
else: | |
return self.get_data_for_trainval(idx) | |
def load_meta_data(self, anno: dict) -> dict: | |
""" | |
Load meta data information. | |
""" | |
if self.meta_data_root is not None and ('meta_data' in anno or 'meta' in anno): | |
meta_data_path = os.path.join(self.meta_data_root, anno['meta_data']) if 'meta_data' in anno else os.path.join(self.meta_data_root, anno['meta']) | |
with open(meta_data_path, 'rb') as f: | |
meta_data = pickle.load(f) | |
meta_data.update(anno) | |
else: | |
meta_data = anno | |
u0, v0, fx, fy = meta_data['cam_in'] | |
meta_data['cam_in'] = [fx, fy, u0, v0] # fix data bugs | |
return meta_data | |
def get_data_for_trainval(self, idx: int): | |
anno = self.annotations['files'][idx] | |
meta_data = self.load_meta_data(anno) | |
data_path = self.load_data_path(meta_data) | |
data_batch = self.load_batch(meta_data, data_path) | |
curr_rgb, curr_depth, curr_normal, curr_cam_model = data_batch['curr_rgb'], data_batch['curr_depth'], data_batch['curr_normal'], data_batch['curr_cam_model'] | |
curr_intrinsic = meta_data['cam_in'] | |
ins_planes_path = os.path.join(self.data_root, meta_data['ins_planes']) if ('ins_planes' in meta_data) and (meta_data['ins_planes'] is not None) else None | |
# get instance planes | |
ins_planes = self.load_ins_planes(curr_depth, ins_planes_path) | |
# load data | |
# u0, v0, fx, fy = meta_data['cam_in'] # this is | |
# ori_curr_intrinsic = [fx, fy, u0, v0] | |
# curr_rgb, curr_depth = self.load_rgb_depth(curr_rgb_path, curr_depth_path) | |
# get crop size | |
# transform_paras = dict() | |
transform_paras = dict(random_crop_size = self.random_crop_size) | |
rgbs, depths, intrinsics, cam_models, normals, other_labels, transform_paras = self.img_transforms( | |
images=[curr_rgb, ], | |
labels=[curr_depth, ], | |
intrinsics=[curr_intrinsic,], | |
cam_models=[curr_cam_model, ], | |
normals = [curr_normal, ], | |
other_labels=[ins_planes, ], | |
transform_paras=transform_paras) | |
# process instance planes | |
ins_planes = other_labels[0].int() | |
# clip depth map | |
depth_out = self.normalize_depth(depths[0]) | |
# get inverse depth | |
inv_depth = self.depth2invdepth(depth_out, torch.zeros_like(depth_out, dtype=torch.bool)) | |
filename = os.path.basename(meta_data['rgb']) | |
curr_intrinsic_mat = self.intrinsics_list2mat(intrinsics[0]) | |
cam_models_stacks = [ | |
torch.nn.functional.interpolate(cam_models[0][None, :, :, :], size=(cam_models[0].shape[1]//i, cam_models[0].shape[2]//i), mode='bilinear', align_corners=False).squeeze() | |
for i in [2, 4, 8, 16, 32] | |
] | |
pad = transform_paras['pad'] if 'pad' in transform_paras else [0,0,0,0] | |
data = dict(input=rgbs[0], | |
target=depth_out, | |
intrinsic=curr_intrinsic_mat, | |
filename=filename, | |
dataset=self.data_name, | |
cam_model=cam_models_stacks, | |
pad=torch.tensor(pad), | |
data_type=[self.data_type, ], | |
sem_mask=ins_planes, | |
normal=normals[0], | |
inv_depth=inv_depth, | |
stereo_depth=torch.zeros_like(inv_depth), | |
scale= transform_paras['label_scale_factor']) | |
return data | |
def get_data_for_test(self, idx: int): | |
anno = self.annotations['files'][idx] | |
meta_data = self.load_meta_data(anno) | |
data_path = self.load_data_path(meta_data) | |
data_batch = self.load_batch(meta_data, data_path) | |
curr_rgb, curr_depth, curr_normal, curr_cam_model = data_batch['curr_rgb'], data_batch['curr_depth'], data_batch['curr_normal'], data_batch['curr_cam_model'] | |
ori_curr_intrinsic = meta_data['cam_in'] | |
# curr_rgb_path = os.path.join(self.data_root, meta_data['rgb']) | |
# curr_depth_path = os.path.join(self.depth_root, meta_data['depth']) | |
# curr_rgb, curr_depth = self.load_rgb_depth(curr_rgb_path, curr_depth_path) | |
# ori_h, ori_w, _ = curr_rgb.shape | |
# # create camera model | |
# curr_cam_model = self.create_cam_model(curr_rgb.shape[0], curr_rgb.shape[1], ori_curr_intrinsic) | |
# load tmpl rgb info | |
# tmpl_annos = self.load_tmpl_image_pose(curr_rgb, meta_data) | |
# tmpl_rgbs = tmpl_annos['tmpl_rgb_list'] # list of reference rgbs | |
transform_paras = dict() | |
rgbs, depths, intrinsics, cam_models, _, other_labels, transform_paras = self.img_transforms( | |
images=[curr_rgb,], # + tmpl_rgbs, | |
labels=[curr_depth, ], | |
intrinsics=[ori_curr_intrinsic, ], # * (len(tmpl_rgbs) + 1), | |
cam_models=[curr_cam_model, ], | |
transform_paras=transform_paras) | |
# depth in original size and orignial metric*** | |
depth_out = self.clip_depth(curr_depth) * self.depth_range[1] | |
inv_depth = self.depth2invdepth(depth_out, np.zeros_like(depth_out, dtype=np.bool)) | |
filename = os.path.basename(meta_data['rgb']) | |
curr_intrinsic_mat = self.intrinsics_list2mat(intrinsics[0]) | |
pad = transform_paras['pad'] if 'pad' in transform_paras else [0,0,0,0] | |
scale_ratio = transform_paras['label_scale_factor'] if 'label_scale_factor' in transform_paras else 1.0 | |
cam_models_stacks = [ | |
torch.nn.functional.interpolate(cam_models[0][None, :, :, :], size=(cam_models[0].shape[1]//i, cam_models[0].shape[2]//i), mode='bilinear', align_corners=False).squeeze() | |
for i in [2, 4, 8, 16, 32] | |
] | |
raw_rgb = torch.from_numpy(curr_rgb) | |
curr_normal = torch.from_numpy(curr_normal.transpose((2,0,1))) | |
data = dict(input=rgbs[0], | |
target=depth_out, | |
intrinsic=curr_intrinsic_mat, | |
filename=filename, | |
dataset=self.data_name, | |
cam_model=cam_models_stacks, | |
pad=pad, | |
scale=scale_ratio, | |
raw_rgb=raw_rgb, | |
sample_id=idx, | |
data_path=meta_data['rgb'], | |
inv_depth=inv_depth, | |
normal=curr_normal, | |
) | |
return data | |
def load_norm_label(self, norm_path, H, W): | |
with open(norm_path, 'rb') as f: | |
normal = Image.open(f) | |
normal = np.array(normal.convert(normal.mode), dtype=np.uint8) | |
invalid_mask = np.all(normal == 128, axis=2) | |
normal = normal.astype(np.float64) / 255.0 * 2 - 1 | |
normal[invalid_mask, :] = 0 | |
return normal | |
def process_depth(self, depth: np.array, rgb: np.array) -> np.array: | |
depth[depth>60000] = 0 | |
depth = depth / self.metric_scale | |
return depth | |
def load_ins_planes(self, depth: np.array, ins_planes_path: str) -> np.array: | |
if ins_planes_path is not None: | |
ins_planes = cv2.imread(ins_planes_path, -1) | |
else: | |
ins_planes = np.zeros_like(depth) | |
return ins_planes | |
if __name__ == '__main__': | |
from mmcv.utils import Config | |
cfg = Config.fromfile('mono/configs/Apolloscape_DDAD/convnext_base.cascade.1m.sgd.mae.py') | |
dataset_i = ApolloscapeDataset(cfg['Apolloscape'], 'train', **cfg.data_basic) | |
print(dataset_i) | |