Spaces:
Running
Running
import os | |
import json | |
import torch | |
import torchvision.transforms as transforms | |
import os.path | |
import numpy as np | |
import cv2 | |
from torch.utils.data import Dataset | |
import random | |
from .__base_dataset__ import BaseDataset | |
class VKITTIDataset(BaseDataset): | |
def __init__(self, cfg, phase, **kwargs): | |
super(VKITTIDataset, self).__init__( | |
cfg=cfg, | |
phase=phase, | |
**kwargs) | |
self.metric_scale = cfg.metric_scale | |
def process_depth(self, depth, rgb): | |
depth[depth>(150 * self.metric_scale)] = 0 | |
depth /= self.metric_scale | |
return depth | |
def load_sem_label(self, sem_path, depth=None, sky_id=142) -> np.array: | |
""" | |
Category r g b | |
Terrain 210 0 200 | |
Sky 90 200 255 | |
Tree 0 199 0 | |
Vegetation 90 240 0 | |
Building 140 140 140 | |
Road 100 60 100 | |
GuardRail 250 100 255 | |
TrafficSign 255 255 0 | |
TrafficLight 200 200 0 | |
Pole 255 130 0 | |
Misc 80 80 80 | |
Truck 160 60 60 | |
Car 255 127 80 | |
Van 0 139 139 | |
""" | |
H, W = depth.shape | |
sem_label = np.ones((H, W), dtype=np.int) * -1 | |
sem = cv2.imread(sem_path)[:, :, ::-1] | |
if sem is None: | |
return sem_label | |
sky_color = [90, 200, 255] | |
sky_mask = (sem == sky_color).all(axis=2) | |
sem_label[sky_mask] = 142 # set sky region to 142 | |
return sem_label | |
if __name__ == '__main__': | |
from mmcv.utils import Config | |
cfg = Config.fromfile('mono/configs/Apolloscape_DDAD/convnext_base.cascade.1m.sgd.mae.py') | |
dataset_i = ApolloscapeDataset(cfg['Apolloscape'], 'train', **cfg.data_basic) | |
print(dataset_i) | |