Spaces:
Running
Running
import os | |
import os.path as osp | |
import time | |
import sys | |
CODE_SPACE=os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) | |
sys.path.append(CODE_SPACE) | |
#os.chdir(CODE_SPACE) | |
import argparse | |
import mmcv | |
import torch | |
import torch.distributed as dist | |
import torch.multiprocessing as mp | |
try: | |
from mmcv.utils import Config, DictAction | |
except: | |
from mmengine import Config, DictAction | |
from datetime import timedelta | |
import random | |
import numpy as np | |
from mono.datasets.distributed_sampler import log_canonical_transfer_info | |
from mono.utils.comm import init_env | |
from mono.utils.logger import setup_logger | |
from mono.utils.db import load_data_info, reset_ckpt_path | |
from mono.model.monodepth_model import get_configured_monodepth_model | |
from mono.datasets.distributed_sampler import build_dataset_n_sampler_with_cfg | |
from mono.utils.running import load_ckpt | |
from mono.utils.do_test import do_test_with_dataloader, do_test_check_data | |
def parse_args(): | |
parser = argparse.ArgumentParser(description='Train a segmentor') | |
parser.add_argument('config', help='train config file path') | |
parser.add_argument('--show-dir', help='the dir to save logs and visualization results') | |
parser.add_argument( | |
'--load-from', help='the checkpoint file to load weights from') | |
parser.add_argument('--node_rank', type=int, default=0) | |
parser.add_argument('--nnodes', | |
type=int, | |
default=1, | |
help='number of nodes') | |
parser.add_argument( | |
'--options', nargs='+', action=DictAction, help='custom options') | |
parser.add_argument( | |
'--launcher', choices=['None', 'pytorch', 'slurm'], default='slurm', | |
help='job launcher') | |
args = parser.parse_args() | |
return args | |
def main(args): | |
os.chdir(CODE_SPACE) | |
cfg = Config.fromfile(args.config) | |
cfg.dist_params.nnodes = args.nnodes | |
cfg.dist_params.node_rank = args.node_rank | |
if args.options is not None: | |
cfg.merge_from_dict(args.options) | |
# set cudnn_benchmark | |
#if cfg.get('cudnn_benchmark', False) and args.launcher != 'ror': | |
# torch.backends.cudnn.benchmark = True | |
# show_dir is determined in this priority: CLI > segment in file > filename | |
if args.show_dir is not None: | |
# update configs according to CLI args if args.show_dir is not None | |
cfg.show_dir = args.show_dir | |
elif cfg.get('show_dir', None) is None: | |
# use config filename + timestamp as default show_dir if cfg.show_dir is None | |
cfg.show_dir = osp.join('./show_dirs', | |
osp.splitext(osp.basename(args.config))[0], | |
args.timestamp) | |
# ckpt path | |
if args.load_from is None: | |
raise RuntimeError('Please set model path!') | |
cfg.load_from = args.load_from | |
# create show dir | |
os.makedirs(osp.abspath(cfg.show_dir), exist_ok=True) | |
# init the logger before other steps | |
cfg.log_file = osp.join(cfg.show_dir, f'{args.timestamp}.log') | |
logger = setup_logger(cfg.log_file) | |
# log some basic info | |
logger.info(f'Config:\n{cfg.pretty_text}') | |
# load db_info for data | |
# load data info | |
data_info = {} | |
load_data_info('data_server_info', data_info=data_info) | |
cfg.db_info = data_info | |
# update check point info | |
reset_ckpt_path(cfg.model, data_info) | |
# log data transfer to canonical space info | |
# log_canonical_transfer_info(cfg) | |
# init distributed env first, since logger depends on the dist info. | |
if args.launcher == 'none': | |
cfg.distributed = False | |
else: | |
cfg.distributed = True | |
init_env(args.launcher, cfg) | |
logger.info(f'Distributed training: {cfg.distributed}') | |
# dump config | |
cfg.dump(osp.join(cfg.show_dir, osp.basename(args.config))) | |
if not cfg.distributed: | |
main_worker(0, cfg, args.launcher) | |
else: | |
mp.spawn(main_worker, nprocs=cfg.dist_params.num_gpus_per_node, args=(cfg, args.launcher)) | |
def main_worker(local_rank: int, cfg: dict, launcher: str): | |
if cfg.distributed: | |
cfg.dist_params.global_rank = cfg.dist_params.node_rank * cfg.dist_params.num_gpus_per_node + local_rank | |
cfg.dist_params.local_rank = local_rank | |
torch.cuda.set_device(local_rank) | |
default_timeout = timedelta(minutes=30) | |
dist.init_process_group(backend=cfg.dist_params.backend, | |
init_method=cfg.dist_params.dist_url, | |
world_size=cfg.dist_params.world_size, | |
rank=cfg.dist_params.global_rank, | |
timeout=default_timeout,) | |
logger = setup_logger(cfg.log_file) | |
# build model | |
model = get_configured_monodepth_model(cfg, | |
None, | |
) | |
# build datasets | |
test_dataset, test_sampler = build_dataset_n_sampler_with_cfg(cfg, 'test') | |
# build data loaders | |
test_dataloader = torch.utils.data.DataLoader(dataset=test_dataset, | |
batch_size=1, | |
num_workers=1, | |
sampler=test_sampler, | |
drop_last=False) | |
# config distributed training | |
if cfg.distributed: | |
model = torch.nn.parallel.DistributedDataParallel(model.cuda(), | |
device_ids=[local_rank], | |
output_device=local_rank, | |
find_unused_parameters=True) | |
else: | |
model = torch.nn.DataParallel(model.cuda()) | |
# load ckpt | |
#model, _, _, _ = load_ckpt(cfg.load_from, model, strict_match=False) | |
model.eval() | |
do_test_with_dataloader(model, cfg, test_dataloader, logger=logger, is_distributed=cfg.distributed) | |
# do_test_check_data(model, cfg, test_dataloader, logger=logger, is_distributed=cfg.distributed, local_rank=local_rank) | |
if __name__=='__main__': | |
# load args | |
args = parse_args() | |
timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) | |
args.timestamp = timestamp | |
main(args) | |